COBRA: Coding Biographies Rendered with Al

Prayash Joshi
Virginia Tech

December 15, 2024

Abstract

This report presents COBRA (Coding Biographies Rendered with AI), a novel system that
transforms developers’ GitHub data into personalized, collectible profile cards. By combining
Hidden Markov Models (HMMs) and Large Language Models (LLMs), COBRA provides a
unique approach to representing developer profiles and analyzing coding patterns. The system
implements a dual-analysis pipeline: quantitative assessment using HMMs for temporal pattern
recognition and qualitative evaluation using LLM-based agents for code quality assessment.
Results demonstrate the effectiveness of this hybrid approach in capturing both the evolution of
development practices and the nuanced aspects of code quality. The system achieved meaningful
state identification with stability scores ranging from 0.57 to 0.83 across test repositories, while
maintaining interpretable developer profile representations.

1 Introduction

The representation of developer expertise and coding practices is a significant challenge in software
engineering. Traditional approaches often fail to capture the dynamic nature of development work
and the evolution of coding practices over time. COBRA (Coding Biographies Rendered with
AI) addresses this gap by introducing a novel approach that combines statistical modeling with
Al-driven analysis to create comprehensive developer profiles.

COBRA aims to tackle the limitations of current methods for showcasing developer skills and
contributions, which often rely on simple metrics like contribution graphs or repository statistics.
These methods fall short in capturing the temporal evolution of coding practices, qualitative aspects
of code quality, the context of development decisions, and the relative importance of different
contributions.

The primary objectives of COBRA include developing a robust framework for analyzing GitHub
repositories using both statistical and Al-driven methods, creating interpretable representations of
developer profiles, establishing meaningful metrics for code quality and development patterns, and
providing an engaging way to showcase developer skills through collectible cards.

2 Technical Approach

2.1 System Architecture

COBRA implements a dual-analysis pipeline that combines statistical modeling with Al-driven
code analysis. The system architecture consists of three main components:

1. Data Management Layer: This layer handles repository cloning, commit history analysis,
and data preprocessing. The RepoDataManager class in data_manager.py efficiently handles

repository caching, commit processing, and file classification. It uses optimized strategies
like direct string manipulation for path handling, set-based file classification, and caching
mechanisms to improve performance.[4]

2. Analysis Engine: The analysis engine comprises the HMM analyzer and LLM-based agent.
The CobraHMM class in cobra hmm.py implements the Hidden Markov Model (HMM) compo-
nent, which models development patterns using a Gaussian HMM with three hidden states. [0]
The LLM-based agent, implemented in the agent .py file, performs qualitative code analysis
using the Ollama language model and LangChain for document processing and retrieval.

3. Profile Generation System: This component transforms the analysis results into collectible
cards. (Implementation details to be added)

2.2 Hidden Markov Model Implementation

The HMM component uses a Gaussian HMM with three hidden states to model development
patterns. The key features of the HMM implementation include biweekly aggregation of commit
data for stability, a feature set consisting of commit frequency, code changes, test coverage, and
maintainability, improved convergence through multiple random restarts, and state interpretation
based on feature patterns.[5] The CobraHMM class encapsulates the core HMM implementation,
providing methods for model training, prediction, and repository analysis.

2.3 LLM-Based Code Analysis

The qualitative analysis component utilizes a LangChain-based architecture with document pro-
cessing using a FAISS vector store [2], code quality assessment using the Ollama (qwen2.5-coder:7b)
language model[I], a custom prompting system for consistent evaluation, and structured output
parsing for quantitative scoring.

3 Methodology

3.1 Data Collection and Preprocessing

Repository data is collected through a process that involves repository cloning and metadata ex-
traction, commit history analysis and feature extraction, file classification and content analysis, and
biweekly data aggregation for stability. The RepoDataManager class handles the data collection
and preprocessing steps efficiently.

3.2 Analysis Pipeline

The analysis pipeline consists of two parallel streams:

HMM Analysis This stream involves feature scaling and normalization, model training with
multiple restarts, state sequence prediction, and state interpretation and scoring.

LLM Analysis The LLM analysis stream includes document chunking and embedding, vector
store creation, code quality assessment, and score aggregation and interpretation.

4 Results and Discussion

4.1 Quantitative Results

Analysis of test repositories yielded quantitative metrics, as shown in Table

Repository Stability | Maturity | Entropy | Dominant State
codekids 0.74 0.56 1.22 State 1 (56.41%)
llama?2 0.83 0.54 0.82 State 1 (83.33%)
filmgenie 0.57 0.51 1.30 State 0 (62.50%)
vector-pytorch 0.79 1.13 0.84 State 0 (82.20%)

The HMM analysis provided quantitative metrics for each repository, including stability scores,
maturity scores, state entropy, and dominant states. These metrics offer insights into the develop-

Table 1: Repository Analysis Results

ment patterns and evolution of the repositories over time.

4.2 Qualitative Analysis

The LLM-based analysis provided qualitative insights into various aspects of the codebase, such as
code quality patterns, documentation completeness, adherence to best practices, and development

patterns and practices.

File Score | Justification Summary

configurator.py 3.0 Lacks structure, documentation, error handling,
uses exec.

sample.py 6.0 Lacks documentation, modularity, and proper
error handling.

test_all.py 7.0 Functional, uses pytest, but lacks documenta-
tion and best practices.

tinystories.py 4.0 Modular but needs better structure and best
practices.

tokenizer.py 8.0 Well-structured, with type hints, but lacks ro-
bust error handling.

train.py 8.0 Comprehensive training loop implementation
with DDP and logging.

README.md 8.0 Well-documented, but some TODOs remain un-
sorted.

doc/stories260K.md 5.0 Informative markdown, lacks error handling or
executable code.

doc/train_llama_tokenizer.md 7.0 Clear instructions, missing error handling and
best practice details.

The single-agent analysis assigned scores to individual files based on factors such as code quality,
documentation, and adherence to best practices. Files like tokenizer.py and train.py received
high scores for their well-structured implementation and comprehensive functionality. On the

Table 2:

Single-Agent Analysis Results

other hand, files like configurator.py and tinystories.py received lower scores due to lack of
documentation, error handling, and best practices.

4.3 Challenges and Limitations

Several challenges were encountered during the implementation of COBRA. Training HMMs can
be computationally expensive, especially with larger datasets, and selecting the optimal number of
hidden states is also a challenge that may require experimentation and domain knowledge. Ensuring
consistent and reliable code quality assessments using LLMs can be difficult due to their inherent
unpredictability and dependence on prompt engineering. LLMs have limited context windows,
which can hinder their ability to understand and analyze large codebases effectively. Striking the
right balance between automated analysis and interpretability of the results is crucial to provide
meaningful insights to users.

One significant limitation is the scalability of the analysis pipeline for large repositories with
extensive commit histories. The current implementation may face performance bottlenecks when
processing vast amounts of data. Additionally, the accuracy of the HMM and LLM-based analyses
heavily relies on the quality and representativeness of the training data. Ensuring a diverse and
comprehensive dataset is essential for generating reliable insights.

5 Future Work

Future developments for COBRA include the implementation of a multi-agent debating architecture
that incorporates a system where agents engage in structured debates to provide more comprehen-
sive and balanced code analysis.

Another area of future work is the integration of generative AI models to create unique and
visually appealing artwork for the collectible profile cards. The development of social features and
gamification elements can be introduced to enhance user engagement and foster a sense of com-
munity among developers. Expanding the validation of COBRA to cover a wider range of project
types, sizes, and domains is necessary to assess its generalizability and robustness. Improving the
interpretability of HMM state transitions is also an important future direction to provide more
meaningful insights into the development lifecycle and patterns.

One potential approach to implement the multi-agent debating architecture is to assign different
roles to each agent, such as a proponent agent that highlights the strengths of the codebase and
an opponent agent that identifies areas for improvement.[3] These agents can engage in structured
arguments, presenting evidence and counterarguments based on the analysis results. A moderator
agent can facilitate the debate and summarize the key points for the user.

To integrate generative Al for card artwork, techniques like Generative Adversarial Networks
(GANSs) or Variational Autoencoders (VAEs) can be explored. These models can be trained on
a dataset of existing developer profile designs and artwork to learn the underlying patterns and
generate novel card designs that align with the user’s preferences and the analyzed repository’s
characteristics.

6 Conclusion

COBRA demonstrates the potential of combining statistical modeling with Al-driven analysis to
create meaningful representations of developer profiles. The dual-analysis approach, leveraging

HMMs and LLMs, provides both quantitative metrics and qualitative insights, offering a com-
prehensive view of development practices. The system’s ability to generate interpretable results
while maintaining engagement through collectible cards presents a promising direction for developer
profile representation.

The project successfully achieved its objectives of developing a robust framework for analyzing
GitHub repositories, creating interpretable developer profiles, establishing meaningful metrics for
code quality and development patterns, and providing an engaging way to showcase developer skills.
However, there are challenges and limitations to be addressed, such as the computational intensity
of HMMs, consistency issues with LLMs, context window limitations, and balancing automated
analysis with interpretability.

Future work on COBRA includes the implementation of a multi-agent debating architecture,
integration of generative Al for card artwork, development of social features and gamification,
validation across diverse project types, and enhanced interpretability of state transitions. Overall,
COBRA presents a novel approach to developer profile representation that leverages the strengths
of statistical modeling and Al-driven analysis, opening up new possibilities for showcasing and
appreciating developer skills and contributions.

7 Figures

(© Repodatatanager

© sosregate bimeekly

ST
, force_refresh: bool = False) -> ListiCommitData] | | STATE 2 © —coll_Id: pd.DateFrome) -> pd DataFrome

vvvvvvvvvv

Figure 1: Cobra-HMM Architecture

References

[1] LangChain Contributors. Chatollama - langchain api reference, 2024. Accessed: 2024-12-15.

S

LangChain Contributors. Faiss - langchain community api reference, 2024. Accessed: 2024-12-
15.

W

LangGraph Contributors. Langgraph reference, 2024. Accessed: 2024-12-15.

=~

PyGithub Contributors. Pygithub documentation, 2024. Accessed: 2024-12-15.

ot

hmmlearn Contributors. hmmlearn documentation, 2024. Accessed: 2024-12-15.

—_— — — =
(=)
L .]

N. Sviridov, M. Evtikhiev, and V. Kovalenko. Tnm: A tool for mining of socio-technical data
from git repositories. 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pages 295-299, 2021.

@ DocumentlLoader

e load_documents(directory: Path) -> List[Dict]

¥ provides documents

@ VectorStore

e create_vector_store{documents: List[Dict], cache_dir: Path) -> FAISS

¥ provides vector store

@ QAChain

e create_qa_chain(vectorstore: FAISS) -= Chain

¥ used by

@ RepoScorer

o project_dir: Path
o llm: ChatOllama

o analyze_file(file_path: Path) -> FileAnalysis
e score_repo() -> Dict

¥ generates

©FiIEAnaI1.rsis

o file_path: str
o score: float
o comments: str

Figure 2: Single—%gent Architecture

-, J - Read CSV file with commit data

| Load Repository Data |-= = - Add test file detection if needed

- Sort data by datetime

(Aggregate Data Biweekly

- Calculate metrics:
- Commit count
- Lines changed
- Test ratio

- Maintainability score

- Resample commit data into 2-week intervals

¥
| Train Cobra-HMM Model —

- Scale feature data
- Train Gaussian HMM with:
- Specified number of states
- Improved convergence settings
(increased iterations, relaxed tolerance)

h 4

|’ Predict Hidden States }J Use trained model to assign most Ilkelylj

] hidden state to each 2-week interval

(Analyze State Results]-=::

Calculate state distribution metrics

- Measure stability based on state transitions

Estimate maturity from test ratio and
maintainability score per state

I,

41

(Generate State Interpretatjon]—

‘ Provide human-readable descriptions
== for each state based on associated
l metrics and thresholds

Figure 3: Cobra-HMM Pipeline

I -, ‘ - Recursively load files from project directory
| Load Documents]-=:: - Classify file types (code, docs, config, etc.)
| — - Extract metadata (path, file type)

p . - Split documents into chunks
| - Generate embeddings using OpenAl
IkCreate Vector Store Jlt" - Create FAISS index for efficient retrieval
- Cache vector store for future use
L 4 - Initialize language model (Ollama)

- Load prompts for file analysis
- Create retrieval-augmented QA chain

(Create QA Chain =
. - Parse model outputs into structured data

| 4 - lterate over priority files (Python, Markdown, etc.)
(Analyze Fi|e5\}=:‘ - Invoke QA chain for each file
§ /] - Extract scores and comments from model output
- Collect file-level analysis results

- Aggregate file-level scores

- Calculate overall repository score
- Summarize total files analyzed

- Return structured results

(Generate Repository Score }

Figure 4: Single-Agent Pipeline

Biweekly Development Patterns: llama2

Figure 6: State Distribution Heatmap

Commits per Two Weeks Code Changes per Two Weeks
250
8000
200
2
£ 150 5 6000
£ &
] g
& H
< 2
5 S
£ 100 & a000
€ =
E]
E
50 2000
0 o
Aug Sep Oct Nov Dec Jan Feb Mar Apr May jun Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
2024 2024
datetime datetime
Test Ratio Trend Maintainability Score
56
0035
55
0.030
0025 >4
S
& 0020 £ 53
K 3
#0015
52
0,010
51
0.005
0.000 50
hug | sep ot | MNow | Dec | Jan Feb | Mar Apr May | jun Mg sép ot | Nov Dec jan feb | Mar Apr | May | jun
2024 2024
datetime datetime
Biweekly Development Patterns: vector-pytorch
Commits per Two Weeks Code Changes per Two Weeks
1400
1200
40
1000 -
8
E 30]
£ & 800+
s 2
S H
< 2
5 S
520 g 600+
€ 3
5
= 400
10
200 4
04 0
2021 2022 2023 2024 2021 2022 2023 2024
datetime datetime
Test Ratio Trend Maintainability Score
05 807
75
04
704
o 03
2 v
2 £ 65
K @
o2
60+
01
554
0.0 50
2021 2022 2023 2024 2021 2022 2023 2024
datetime datetime

1.0

08

0.6

0.4

0.2

0.0

Repository Quality Metrics State Distribution Across Repositories

m stability
— Maturity

)
-]
=
]
B
8

Repository
filmgenie

llama2

vector-pytorch

State 0 State 1 State 2
State

Repository

Figure 7: Detailed Biweekly Patterns for vector-pytorch

10

	Introduction
	Technical Approach
	System Architecture
	Hidden Markov Model Implementation
	LLM-Based Code Analysis

	Methodology
	Data Collection and Preprocessing
	Analysis Pipeline

	Results and Discussion
	Quantitative Results
	Qualitative Analysis
	Challenges and Limitations

	Future Work
	Conclusion
	Figures

