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Abstract
We propose a framework for smart contract security testing us-
ing Large Language Models (LLMs) for contextual mutation-based
fuzzing. While traditional fuzzers lack semantic understanding of
smart contracts, we want to leverage LLMs to comprehend contract
context and purpose, enabling more effective test input genera-
tion. This paper presents our methodology for developing an LLM-
enhanced testing framework that aims to improve vulnerability
detection in Solidity smart contracts, particularly focusing on the
security implications of the Pectra upgrade affecting 298.7 million
addresses.

CCS Concepts
• Security and privacy → Software security engineering; Soft-
ware and application security.

Keywords
Smart Contracts,Mutation, Fuzzing, Large LanguageModels, Ethereum,
Security Testing

ACM Reference Format:
Prayash Joshi and Joong Hyun An. 2025. LLM-Enhanced Smart Contract
Fuzzing for Ethereum Pectra Security. In Proceedings of Course Project Initial
Report (CS 5594). ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 Introduction
1.1 Problem Motivation
The Ethereum network is undergoing a significant upgrade known
as Pectra, affecting 298.7 million accumulated addresses. This up-
grade is expected to introduce changes aimed at improving scala-
bility, network security, and user customization. However, major
upgrades such as Pectra inherently can launch with potential se-
curity vulnerabilities. To mitigate these risks, we aim to develop a
test generation framework capable of identifying and addressing
potential bugs as the update launches.
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1.2 Key Ideas
Smart contracts are self-executing programs on the blockchain
that require robust security testing mechanisms. While traditional
fuzzing tools like Echidna provide automated bug discovery capa-
bilities, they primarily operate based on syntactic analysis. Our key
innovation lies in enhancing mutation-based fuzzing with LLMs
to incorporate semantic understanding and reasoning about smart
contracts. This approach enables the development of stronger and
more efficient test cases aligned with the evolving needs of smart
contract security.

1.3 Proposed Contributions
This research aims to contribute the following:

• Introduce a preliminary study on the strengths and weak-
nesses of LLMs (both open-source and closed-source) in
handling various mutations.

• Develop an LLM-enhanced mutation-based fuzzing frame-
work for testing and validating smart contracts.

• Deploy smart contracts to Sepolia test net and check poten-
tial Pectra security issues.

• Release our LLM-based mutation testing framework for open
collaborations.

2 Approach Overview
Our approach consists of two main components: First, we conduct
an exploratory study to investigate the strengths and limitations
of Large Language Models (LLMs) by evaluating test suites they
generate against both original and mutated code. We measure cov-
erage differences and fault detection. We want to understand how
effectively LLMs handle logical variations introduced by mutations.
Second, we develop a mutation-based fuzzing framework that in-
tegrates LLMs in various ways (e.g., providing one-shot examples
derived from our mutation study). We then compare different LLM-
based fuzzing strategies in terms of coverage and their ability to
detect potential bugs.
We assess whether LLMs can generate sufficiently diverse and ro-
bust tests when presented with mutated smart contract code, focus-
ing on coverage and the discovery of seeded faults. Our mutation-
based fuzzer will leverage LLMs for test input seed generation.

3 Related Work
3.1 Traditional Testing Approaches
Fuzzing was used as a tool to detect anomalies in softwares. Engi-
neers found that random generated input could break softwares,
and the techniques were utilizied to amend vulnerabilities. Fuzzing
is not limited to the traditional software development. Blockchain
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developers found ways to take advantage of fuzzing, making the
blockchain layers more secure and robust. [14]

3.1.1 Early Fuzzing Approaches.
Fuzzing can be divided into two eras: before AI and after AI. Before
the wide usage of large language models, ContactFuzzer was de-
veloped to be one of the earliest Ethereum smart contract fuzzers.
It generates inputs based on the contract’s application binary in-
terface for a valid function call and checks for vulnerabilities.[8]
Echidna came two years after, an open-source fuzzer focusing on
specific invariants and assertions in smart contracts.[4]

3.1.2 Fuzzing Techniques and Tools.
Fuzzing has been tailored to handle the unique sides of blockchain
codes. Black-box fuzzing is generating input without the knowledge
of the contract’s internal execution. ContractFuzzer was developed
this method. Such method can be time-consuming with invalid
input attempts and may lead to a high rate of false positives unless
carefully orchestrated.[8] Then there is a coverage-guided grey-box
Fuzzing, which is considered a standard in smart contract fuzzing.
If there is an input leading to a new path, a fuzzer further mutates it.
If not, the input is deprecated. A good example is Harvey, a smart
contract grey-box fuzzer which uses an algorithm to discover new
input likely leading to new paths. [15]

3.1.3 Mutation Testing.
Mutation testing involves injecting small mutants into contract
code, which in turn evaluates the effectiveness of the test suite.
Mutation-based fuzzers start with initial set-up inputs and then
produce new tests by randomly mutating the set. A study shows
that mutation-based fuzzer can be more effective if sets are started
from valid contract inputs.[13]

3.1.4 Generation-Based Fuzzing.
The case is different for generation-based fuzzers, which construct
inputs from scratch. They refer to models or grammars of invalid
inputs for generation. ContractFuzzer employs a classic generation-
based fuzzing method. It utilizes type-correct but random inputs to
invoke functions.[8]

3.1.5 Coverage as a Key Metric.
Coverage is often used in fuzzing to evaluate and guide smart con-
tract fuzzers. The higher the coverage, the more likely a fuzzer is
to detect anomalies in contracts. sFuzz, a grey-box fuzzer, set unex-
plored branches as goals to maximize coverage, while ILF(Imitation
Learning-based Fuzzer) utilized coverage to prove its effectiveness
to their predecessors Echidna. [11][5]

3.2 LLM Applications in Security
3.2.1 Prior to LLMs.
Before the rapid evolution of LLMs, researchers at ETH Zurich
looked at combining symbolic execution with a neural network
to enhance fuzzing effectiveness for Ethereum smart contracts.[6]
Their framework employs symbolic execution to generate high-
quality input sequences used to train neural networks to generate
fuzzing policies. They were able to improve coverage and find more
bugs than traditional tools, but required a large training corpus of
contracts that needed to be organized into specific patterns found
in training data.

3.2.2 Large Language Models as Generalized Experts.
Large Language Models (LLMs) are powerful artificial intelligence
(AI) systems powered by dense neural networks that can compre-
hend and produce tokens at scale. Recent developments incorporate
reasoning steps that allow LLMs to repeatedly call themselves, ver-
ify logic, and decide subsequent actions. Their capacity for zero-shot
or few-shot learning tasks has establishes them as generalized ex-
perts in programming, writing, content evaluation, and various
other tasks. Trained on extensive internet corpora containing di-
verse data and documentation, LLMs capture a breadth of intercon-
nected domain knowledge that we aim to harness in our proposed
framework.

In the context of Ethereum smart contracts, LLMs can generate
Solidity code thanks to the rich documentation, examples, and code
repositories included in its training corpus. We are interested in
whether these models truly interpret the minute changes in typ-
ical syntactic Solidity code or simply produce text patterns that
appear plausible. With interpretative capabilities and test input
generation strategies, we can leverage the model’s understanding
of contract invariants, functional specifications, and potential eco-
nomic exploits to better guide fuzzing analysis in high-risk code
regions.

3.2.3 Recent Work.
Recent studies exploring the application of LLMs to enhance secu-
rity analysis for blockchain-based systems show some good results.
Chen et al.[1] provided a deep investigation of the capabilities of
ChatGPT in detecting common smart contract vulnerabilities. Their
findings showed that while LLMs exhibit relatively high recall for
security flaws, precision scores were varied across their tests. This
is likely due to misinterpretations of blockchain-specific logic. Sim-
ilarly, Ji et al.[7] proposed FuzzLGen, a framework that integrates
LLM agents and static program analysis to automate seed corpus
generation for smart contract fuzzing. FuzzLGen significantly im-
proves code coverage and the discovery rate of critical bugs by
incorporating static program analysis into the prompting strategy.
Zhang et al.[16] introduced a framework that combines LLM-based
insights with rule-based reasoning to detect bugs carrying sub-
stantial monetary risk, showing how deep learning models and
deterministic methods can complement each other in structured
protocols.
Based on existing work, LLMs can be leveraged as “cognitive en-
gines,” interpreting code relationships and generating contextually
rich input sequences to guide existing testing or scanning tech-
niques. However, blockchain-specific smart contract development
remains a niche domain, and Solidity is rarely used outside of
blockchain projects. Researchers have reported measurable gains
in both test coverage and bug-finding effectiveness when they in-
corporate LLM-based reasoning with domain-focused heuristics
and examples.

3.2.4 Current Limitations.
Despite the immediate results from LLMs on certain benchmarks
or repositories, there are still shortcomings such as data leakage
or model hallucinations. LLM-based security analysis can also suf-
fer from a lack of domain knowledge, particularly when dealing
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Figure 1: Project Architecture

with advanced Solidity logic or larger codebases that involve multi-
layered contracts. In addition, efforts to adapt LLMs through curated
datasets often hinge on obtaining high-quality labeled data.
We look to expand LLM-based test generation in smart contract
domain by proposing a smart contract mutation testing framework
that integrates our findings from the mutation study and strategies
with targeted LLM reasoning, ensuring more transparency about
its steps, while engineering the prompt to be domain-aligned.

4 Project Implementation
4.1 Architecture of the Project
Figure 1 shows the overall architecture of the project. There are
five elements in the system: a local agent, smart contract database,
LLM, local test environment and Sepolia test net. The local agent
retrieves the Solidity file, consisting of smart contracts, from the
smart contract database. The local agent then queries LLM for the
test suite. Then the LLM gives the local agent Solidity file in t.sol
format. The agent provides the local test environment with two
types of files: a Solidity test file and LLM generated tests. When
the local test environment finishes the tasks, it hands the agent
with results. Then the files are deployed to Sepolia test net to check

security issues. The results are returned, the output of Solidity
codes are stored and the agent moves onto the next batch. The
process is repeated until all data sets are tested. As both MacOS
and EndeavourOS is used for development of the project, Python
dependency management system is used to prevent dependency
crash between two team member’s development setting. Private
keys and RPC URLs are stored in .env file for the duration of the
final report, but will be transferred to Foundry Cast wallet for robust
security.

4.2 Mutation Testing Framework
Our mutation testing framework employs a dual-pipeline architec-
ture to evaluate the efficacy of LLM-generated test suites and to
better understand how LLMs comprehend code semantics versus
syntactic patterns. Figure 2 illustrates our comprehensive approach.

4.2.1 Mutation Selection.
We selected five mutation operators (aor, cor, evr, lvr, ror) following
standard mutation testing practices:

• AOR (Arithmetic Operator Replacement): Replaces opera-
tions like +, -, *, /, and % with other arithmetic operators
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Figure 2: Two Pipelines and Evaluation Strategy

• COR (Conditional Operator Replacement): Substitutes condi-
tional operators like ==, !=, <, >, <=, and >= with alternatives

• EVR (Expression Variable Replacement): Replaces a variable
in an expression with another variable of compatible type

• LVR (Literal Value Replacement): Replaces literal values
with other constants (e.g., changing "1" to "0" or "2")

• ROR (Relational Operator Replacement): Swaps relational
operators in boolean expressions

For each mutation operator, we generated 16 different mutants
per contract, aiming to cover different parts of the codebase. Muta-
tions were then balanced across quartiles to ensure comprehensive
coverage of the contract functionality.

We’ve leveraged an off-the-shelf Universal Mutator library con-
taining vauge rules with capabilities to mutate solidity contracts.
However, it lacked the fine-grained detail for distinguishing dif-
ferent mutation operators and provided inconsistent performance
across contracts of different lengths and types. Thus, based on the
mutation groups we planned aboved, we implemented our own
regex rules to identify patterns andmutate. This requires a complete
understanding of solidity syntax and programming practices to cap-
ture the respective pattern int the code.With our novel contribution
to the existing package, we are able to provide a comprehensive
look into the preformance of Large Langauge Models given differnt
bugs.

4.2.2 Two-Pipeline Evaluation Architecture.
Our framework’s novelty lies in its dual-pipeline evaluation archi-
tecture:

Pipeline 1: Original Context Test Generation.
In this pipeline, we first provide the LLM with the original, un-
mutated contract. The model generates a comprehensive test suite
based solely on this original code. We then evaluate this test suite
against:

• The original contract code (C1 scenario)
• All mutated versions of the contract (C2 scenario)

This approach tests whether LLM-generated tests are robust
enough to detect subtle mutations in code, and whether they truly
understand the contract’s functional requirements.

Pipeline 2: Mutated Context Test Generation.
In the second pipeline, we provide the LLM with mutated contract
code. Specifically, we select one random mutation from each mu-
tation operator group (5 mutations total per contract). For each
mutation, the model generates a test suite tailored to the mutated
code. We then evaluate these test suites against:

• The specific mutated code used to generate them (C3 sce-
nario)

• The original, unmutated contract code (C4 scenario)
This pipeline reveals whether LLMs adapt their test generation

based on code changes, and whether they can distinguish between
substantive logical changes and superficial syntactic ones.

4.2.3 Cross-Evaluation Scenarios.
Our framework implements four distinct evaluation scenarios to
analyze different aspects of LLM test generation capabilities:

C1: Original Test Suite vs. Original Code.
The C1 scenario evaluates how well the test suite generated from
the original contract performs against the original code. This serves
as our baseline measurement, verifying that the LLM can produce
valid, compilable tests that correctly validate the contract’s expected
behavior. A successful C1 evaluation demonstrates that:

(1) The LLM can generate syntactically correct Solidity test code
(2) The test suite properly understands the contract’s API and

expected behavior
(3) The tests successfully compile and run without errors

C2: Original Test Suite vs. Mutated Code.
In the C2 scenario, we run the test suite generated from the original
contract against mutated versions of the contract. This measures the
robustness of LLM-generated tests—their ability to detect semantic
changes in contract behavior. A successful test should fail when
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executed against a mutated contract, especially at the point where
the mutation was introduced. We evaluate:

(1) Mutation Detection Rate The percentage of mutations that
cause at least one test to fail

(2) Specificity: Whether test failures correspond to the specific
line or function containing the mutation

(3) Coverage Differences: How code coverage metrics change
when running against mutated code

C3: Mutated Test Suite vs. Same Mutated Code.
The C3 scenario examines whether an LLM can adapt its test gen-
eration when presented with mutated code. We run each test suite
generated from a mutated contract against the same mutated ver-
sion used for generation. This measures if the LLM:

(1) Successfully produces tests that pass when run against the
mutated code

(2) Maintains code coverage despite the introduced mutations
(3) Adapts its testing strategy to accommodate the modified

logic

C4: Mutated Test Suite vs. Original Code.
Finally, the C4 scenario evaluates whether tests generated from
mutated code can still run successfully against the original code.
This reveals whether the LLM:

(1) Focuses on testing universal contract invariants rather than
implementation details

(2) Overfits tests to specific code implementations
(3) Can generalize test cases beyond the specific code version it

was shown
From these four scenarios, we learn whether LLMs truly under-

stand smart contract semantics or just pattern-match on syntax. We
are aware that solidity contract syntax is very similar to JavaScript
but its nuances like such as gas optimization, immutable state, and
precise access control make solidity contracts a challenge in auto-
mated testing using Large Language Models.

4.3 Evaluating Tests
4.3.1 Baseline.
As a baseline, we employ Foundry (Forge) to conduct initial “sanity”
tests, alongside industry-standard mutation-based fuzzing tools
such as Echidna and Medusa. Widely adopted by developers, these
tools provide a reliable comparison point for assessing the feasibility
of context-aware, LLM-generated test suites in real-world settings.

4.3.2 Context-Fuzzer.
For our LLM-based approach, we again leverage Foundry (Forge) for
basic sanity checks. We then use large language models to generate
diverse and error-inducing inputs, integrating Foundry’s fuzzing
utilities to create amore context-aware testing system. Formutation
testing, we adopt Vertigo-RS [12], a tool seamlessly integrated with
Foundry, to measure how effectively the LLM-generated tests detect
artificially injected faults.

4.4 Prompt Engineering/Fine-tuning LLM
Today, million dollar companies are in business based on the qual-
ity of their prompts and thier ability to leverage LLMs to their

full potential to solve their user’s needs. We aim to make smart-
contract testing even smarter. We have employed 9 large language
models comprehensive coverage-focused test suites based on smart
contracts.

4.4.1 Structure.
We designed a structured prompt that guides the model through its
task. In our prompt, we first assign the role of an expert Solidity test
engineer to the LLM, ensuring it understands the context and ob-
jectives of generating a comprehensive Foundry test suite. We then
define clear testing guidelines—including the need to cover normal
operations, edge cases, and boundary conditions—and list specific
technical requirements for handling Solidity constructs such as ar-
rays and structs. Finally, we provide a standardized template format
to enforce consistency in the generated code. A detailed description
of this prompt structure can be found in Appendix Table ??.

4.4.2 Advanced Context-Aware Prompting. For our final implemen-
tation, we significantly enhanced the prompt architecture with
domain-specific knowledge aimed at improving test robustness
and semantic understanding of solidity. In particular, we added
foundry’s forge techniques and "cheatcodes"[3] to the system con-
text. We specified gas efficiency optimization instructions and em-
phasizedminimal non-redundant and deterministic tests. Blockchain
environments are difficult to test on as contracts’ execution costs are
directly tied to code complexity and cost of maintainence. Addition-
ally, we included guidance for Foundry-specific testing patterns, in-
cluding virtual machine manipulation commands like vm.prank(),
vm.expectRevert(), and vm.expectEmit(). This is essential for
achieving higher coverage scores for complex contracts like the
ones evaluated in the final dataset. With a stricter requirements
for code block delimitation through “‘solidity tags, we got more
reliable extraction of generated codewhen using open-source specif-
ically.

When comparing our basic and advanced prompting approaches
revealed substantial improvements across multiple performance
dimensions. The advanced prompting strategy increased success-
ful compilation rates from 44% to 78% across all evaluated models
when testing our more complex contract suite. Gas efficiency was
significantly improved, with average gas consumption decreasing
from 1,876,412 to 969,734 gas units per test suite execution—a 48.3%
reduction. Common error patterns, particularly incorrect array ac-
cess methods and undeclared variable references, were reduced.
Upon analyzing the generated tests, advanced prompting produced
more targeted tests that focused on critical functionality without re-
dundancy. When evaluating SimpleNFT and BasicToken contracts,
coverage remained at 100% despite using 30% fewer test functions.
These results demonstrate that there are significant improvements
to be made when leveraging a crafted prompts with domain-specific
knowledge and structured instructions. We’ve enhanced LLMs’ abil-
ity to generate efficient, effective Solidity test suites, particularly
when evaluating potentially vulnerable mutations in complex smart
contracts.

4.5 Network Test Environment
The tests are first conducted on a local host network with Foundry
Forge. Once local tests are passed, the same contracts and mutated
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contracts are tested on Sepolia, which is one of the biggest test
nets in the Ethereum network. Sepolia is the network to have the
test smart contracts distributed and nodes from Alchemy, a node-
as-a-service provider, is used. Foundry Forge is used to initialize,
build, create and broadcast smart contracts to Sepolia. MetaMask is
used to check the balance after broadcasting contracts, and Foundry
Cast is used to interact with the functions and codes released in
Sepolia. Alternatively, using Remix to deploy and Sepolia Etherscan
to interact with deployed codes were considered, but deprecated
due to the expected time consumption of running a large number of
data. Due to the limitation of gas fees, the research team may limit
the number of smart contracts tested in Sepolia. The gas fees for
Sepolia will be sourced from Google Cloud Sepolia Faucet, which
provides users with a limited amount of gas fees every 24 hours.

4.5.1 Why Sepolia Test Net?
Various networks have been considered by the team for the main
testing of this research, including the Holesky and Anvil-MetaMask
networks. Sepolia was chosen because the Pectra upgrade was
implemented most successfully in Sepolia, while Holesky which
focused on staking update had major flaws including continuous
outage, system instability, finality and client software configuration
bug. Sepolia had instability issues and minor bugs at first, but is now
dealt with and believed to be stabilized. Localhost network was also
considered, but the idea was quickly deprecated since Localhost
only reflects earlier versions of Ethereum network’s structure which
will not be able to fully reflect the Pectra upgrade. [9]

4.6 Dataset
Five solidity contract file in .sol format are generated through a large
languagemodel. The input promptwas to create five comprehensive
and widely used contract functions that can be mutated and tested
with our framework. It is important to note that these functions are
for testing purposes only, and not to be used for production setting.
They do simulate ERC-20 and ERC-721 behaviors, but do not fully
implement their functionalities such as transferring actual ERC-20
tokens.

• BasicToken.sol This solidity file includes the standard ERC-
20 token functionalities. The functionalities include transfer,
approve, send behalf of, and track balance to handle basic
transactions in ERC-20 format.

• SimpleDAO.sol This solidity file is a simple decentralized
autonomous organization governance contract, which can be
used for proposals and voting. Each proposal goes through
pending, activate, succeeded/defeated, and executed. One
address can vote once, with parameters such as votingPeriod
that can be set for a proposal voting duration.

• SimpleLendingPool.sol This solidity file is DeFi lending
platform for users to borrow against collateral, deposit to-
kens, and earn or pay interest. It allows users to liquidate
undercollateralized users and also assess safety of one’s po-
sition with getHealthFeactor.

• SimpleMultiSigWallet.sol This solidity file is creating a
wallet that requires multiple signatures to execute transac-
tions. The confirmation process is manual per user and per
transaction, not an automated loop-based approval.

• SimpleNFT.sol This solidity file follows the ERC-721 format
and allows users to use non-fungible token functions includ-
ing but not limited to minting and transfer of ownership.

5 Preliminary Results

Table 1: SimpleStorage[2] Contract Test Results

Metric Value

Project Name SimpleStorage
Test Number 1
Gas Used 562,691
Gas Fees (in gwei) 1.000000001
ETH Amount 0.0005626910006
Block Number 1
Deployed TRUE
Note: Gas Analysis performed in localhost anvil ecosystem

5.1 Test Compilation and Execution
To evaluate the effectiveness of the LLM-generated tests, we com-
piled and executed the generated test suites across different models
in two phases. Our initial evaluation with simpler contracts showed
promising results with certain models achieving complete success,
as detailed in Appendix Table 4. When progressing to our advanced
contract suite, performance varied significantly across model types
and contract complexity. Our evaluation metrics included compila-
tion success, test count, passing/failing tests, code coverage, and
gas consumption. Table 6 shows the comprehensive results for our
final evaluation across five complex contracts, revealing that while
models like claude-3-7-sonnet-latest maintained high perfor-
mance on moderately complex contracts, all models struggled with
the most sophisticated multi-signature implementation.

We conducted a gas analysis by deploying all five contracts to the
Sepolia testnet. As shown in Appendix Table 2, deployment costs
varied substantially based on contract complexity, with bytecode
size directly correlating to gas consumption. The SimpleMultiSig-
Wallet and SimpleNFT contracts required the most gas (over 1.9
million units each), while the basic ERC-20 token implementation
consumed just over 1 million gas units. This analysis provides
valuable insight into the economic considerations of deploying
LLM-generated smart contracts in production environments, partic-
ularly in the context of the Pectra upgrade where gas optimization
becomes increasingly important.

5.2 Common Error Patterns
Our analysis identified distinct error patterns between the midterm
and final evaluations.While initial errors (shown in Table 5) focused
on basic syntactic issues like array access methods, the final evalua-
tion revealed more sophisticated semantic challenges when testing
complex contracts. Table 7 classifies these advanced errors by sever-
ity and frequency, with contract structure misunderstanding and
import path errors causing the most critical failures. The Simple-
MultiSigWallet contract proved particularly challenging, with all



LLM-Enhanced Smart Contract Fuzzing for Ethereum Pectra Security CS 5594, February 2025, Blacksburg, VA

models failing to generate compilable tests due to incomplete com-
prehension of its authorization flow and transaction confirmation
mechanisms.

6 Project Timeline
• 2/7: Develop initial proposal.
• 2/28: Preliminary literature review.
• 3/6: Initial Mutation Evaluation Tests complete.
• 3/13: Integrate Evaluation Benchmark Dataset.
• 3/20: Implement Preliminary LLM prompting strategies.
• 4/4: Midterm Report.
• 4/17: Update strategies and test on Sepolia test net for Pectra
upgrade.

• 4/24: Refine strategies based on results from the Pectra ex-
periment.

• 5/7: Pectra scheduled to go live on the mainnet.
• 5/10: Final Report and Presentation.

7 Whats Next
7.0.1 Strengths and Weakness.
Strengths: Our preliminary findings show that Large Language
Models (LLMs) can effectively generate meaningful test inputs,
especially when guided by well-structured prompts.
Weaknesses: Although LLMs display promising code-generation
abilities, we face recurring issues specific to Solidity and its toolchains.
Some of these models were trained predominantly on more main-
stream languages; thus, syntactic and semantic errors arise when
handling contract-specific constructs (e.g., struct arrays, inheri-
tance). Ensuring the generated code compiles and properly refer-
ences advanced contract features is a challenge.

7.0.2 Future Works.
Dataset Coverage: Datasets gathered from theASSERT-KTH/DISL
Hugging Face dataset, will be used to expand our research cover-
age. The corresponding dataset has nearly 400,000 rows with 20
different Solidity versions with the latest one being 0.8.X. We found
that more than 20,000 rows do not contain solidity version spec-
ified with Pragma. Data cleaning is handled based on a contract
license, Solidity version compatibility, and contract type variety.
Additional data may be collected in the future from Etherscan or
Sepolia Etherscan to deal with a new type of security threat. Our
work is comprehensive to cover issues arising from Pectra upgrade
that may affect millions of addresses in Ethereum network. The
dataset will be adding issues specific to Pectra to keep the network
secure. Decomposed version is used to ensure each data set entries
are unique. The smart contracts under commercial license are not
published in this paper. Those that allowed the use in research will
be included in the final report to showcase the effectiveness of the
team’s project.[10]

Cross-Evaluation Completion: Our current study provide a ro-
bust foundation through the C1 scenario evaluation. We look for-
ward to completing the dual-pipeline architecture that looks at
a comprehensive analysis of the C2, C3, and C4 scenarios. The
Cross-evaluations will provide novel insights into LLMs’ semantic
understanding of smart contracts versus syntactic pattern-matching.
The objective of the C2 evaluation is to reveal mutation detection

capabilities and how effective LLM-generated tests can identify
subtle semantic changes in contract behavior. Our C3 analysis will
demonstrate adaptation intelligence where we evaluate if models
can generate tests that accommodate mutations while maintaining
coverage. And finally, the C4 scenario would demonstrate the gener-
alization capacity of LLMs when given invariant contract mutations.
We believe these evaluations will transform our preliminary find-
ings into a comprehensive empirical study. Given our experimental
infrastructure, including our contributions to the mutation genera-
tion library, evaluation metrics measurement strategy, and prompt
engineering, the next step is completing the cross-evaluation matrix
to advance understanding of LLM capabilities in smart contract
security testing.
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A Supplemental Tables

Table 2: Gas Analysis for Contract Deployment on Sepolia
Testnet

Contract Gas Used Gas Price (gwei) Sepolia ETH Cost Code Size (bytes) Contract Address

BasicToken 1,087,466 0.001000052 0.0000010875 4,095 0x90c6...4B71
SimpleDAO
(Governance Token)
(DAO Contract)

1,087,526
1,507,522

Total: 2,595,048
0.001000019

0.0000010875
0.0000015075

Total: 0.0000025951

4,095
6,316

0x20A2...6745
0x8C01...72EB

SimpleLendingPool
(Collateral Token)
(Lending Token)
(Pool Contract)

1,087,526
1,087,502
1,738,267

Total: 3,913,295

0.001000014

0.0000010875
0.0000010875
0.0000017383

Total: 0.0000039133

4,095
4,095
7,285

0x42B2...7B32
0x7e07...354B
0x3989...Dc16

SimpleMultiSigWallet 1,933,784 0.001000013 0.0000019338 7,765 0x4E2D...bA76
SimpleNFT
(Deploy)
(Mint Initial NFT)

1,945,229
115,913

Total: 2,061,142
0.001000013

0.0000019453
0.0000001159

Total: 0.0000020612
8,470 0x0095...c3aA

Note: Gas prices shown are in gwei (10-9 ETH). Contract addresses are truncated for readability. Code size represents the deployed bytecode
size. Total ETH cost for all contracts: 0.0000116909 ETH (approximately $0.034 at current Ethereum rates).
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Table 3: Basic vs. Advanced Prompt Engineering for Solidity Test Generation

Component Basic Prompt (Midterm) Advanced Prompt (Final)

Role Assignment You are an expert Solidity test engineer tasked with
generating a comprehensive Foundry test suite. Focus
on testing all aspects of the contract’s functionality.

You are an expert Solidity test engineer tasked with
generating a concise but comprehensive Foundry test
suite for the specific contract. IMPORTANT: Create
the MINIMUM number of tests needed for complete
coverage.

Testing Guidelines
• Use the same Solidity version as the original con-
tract

• Test normal operation, edge cases, and boundary
conditions

• Include function-specific tests for all public and
external functions

• Correctly handle the return values of all func-
tions

• For arrays and structs, properly destructure re-
turn values

• Use pragma solidity from original contract
• Test ONLY key functionality, edge cases, and
boundary conditions

• Focus on the most important public and external
functions

• Focus on gas efficiency and brevity
• Avoid redundant and non-deterministic tests

Technical Requirements
• Use the Foundry test framework with proper
imports

• When accessing array items that return structs,
you must destructure the result

• DO NOT use dot notation on array returns

• Use Foundry test frameworkwith proper imports
• Import ONLY the contract and Test.sol
• Do not create mock contracts
• Use vm cheatcodes efficiently (prank, deal, warp,
expectRevert)

• Define only necessary test addresses in setUp()
• Keep the entire test suite under 200-300 lines of
code

Foundry-Specific Guidance None provided
• Use setUp() for state initialization
• Create addresses with makeAddr(): address user
= makeAddr("user")

• Use vm.prank() for single calls or
vm.startPrank()/vm.stopPrank() for multi-
ple calls

• Test reverts with vm.expectRevert()
• Test events with vm.expectEmit()
• Modify timestamps with vm.warp()

Template Format Basic template with SimpleStorage hardcoded as con-
tract instance variable name

Enhanced template with:
• Generic contractInstance naming
• Pre-defined owner and user1 addresses
• Event declaration placeholders
• Constructor parameters placeholder
• Recommendation for 8-18 targeted tests

Output Requirements Generate only the test file code - no explanations or
comments outside the code.

VERY IMPORTANT: Must enclose test suite in “‘solidity
and “‘ code blocks for reliable extraction
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Table 4: Midterm Test Compilation and Execution Results by Model

Model Compilation
Success Tests Passing Failing Coverage

claude-3-5-sonnet-latest ✓ 10 10 0 100%
claude-3-5-haiku-latest ✓ 5 5 0 100%
qwen-2.5-coder-32b ✓ 8 7 1 87%
gpt-4o-mini ✓ 6 5 1 83%
gemini-1.5-flash × – – – –
gemini-2.0-flash × – – – –
llama-3.3-70b-versatile × – – – –
o1-mini × – – – –
deepseek-r1-distill-qwen-32b × – – – –
Note: Models are sorted by test success rate and then by number of tests.

Table 5: Midterm Common Error Patterns in Failed Tests

Error Type Description Affected Models Example

Array Length Ac-
cess

Incorrectly trying to access length
as a property on the array function

gemini-1.5-flash,
gemini-2.0-flash,
llama-3.3-70b-versatile,
o1-mini

simplestorage.listOfPeople.length

Missing Index Pa-
rameter

Attempting to call array function
without index parameter

llama-3.3-70b-versatile simplestorage.listOfPeople()

Undeclared Vari-
able

Using variable names that don’t ex-
ist in the contract

deepseek-r1-distill-qwen-
32b

StoredName instead of
storedName

Revert Errors Tests that compile but fail when run-
ning

gpt-4o-mini,
qwen-2.5-coder-32b

testMultiplePersons(),
testEmptyList()

Note: More severe errors (preventing compilation) are highlighted in darker colors.
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Table 6: Final Test Compilation and Execution Results by Model and Contract

Contract Model Compilation
Success Tests Passing Failing Coverage

(%)

BasicToken claude-3-7-sonnet-latest ✓ 11 11 0 100.0
BasicToken claude-3-5-haiku-latest ✓ 7 7 0 100.0
BasicToken o3-mini ✓ 7 7 0 100.0
SimpleNFT claude-3-7-sonnet-latest ✓ 20 20 0 100.0
SimpleNFT claude-3-5-haiku-latest ✓ 9 9 0 100.0
SimpleNFT llama-3.3-70b-versatile ✓ 7 7 0 100.0
SimpleNFT o3-mini ✓ 10 10 0 100.0
SimpleNFT gpt-4.1-mini ✓ 20 20 0 100.0
SimpleDAO claude-3-7-sonnet-latest × 11 10 1 90.9
SimpleDAO llama-3.3-70b-versatile × 9 3 6 33.3
SimpleLendingPool claude-3-7-sonnet-latest × 16 15 1 93.7
SimpleLendingPool gpt-4.1-mini × 22 18 4 81.8
SimpleLendingPool o3-mini × 8 7 1 87.5
BasicToken gpt-4.1-mini × 10 9 1 90.0
BasicToken gemini-2.5-flash-preview-04-17 × 14 13 1 92.8
SimpleMultiSigWallet All Models × 0 0 0 0.0
SimpleDAO Multiple Models × 0 0 0 0.0
SimpleLendingPool Multiple Models × 0 0 0 0.0
Note: Green rows indicate complete success, yellow rows indicate partial success with minor failures, and red rows indicate complete failure.
The SimpleMultiSigWallet contract presented compilation challenges for all models.

Table 7: Final Evaluation: Common Error Patterns in Failed Tests

Error Type Description Affected Contracts Example

Contract Structure
Misunderstanding

Failure to comprehend the com-
plete contract architecture

SimpleMultiSigWallet
SimpleDAO

Error (9182): Function,
variable, struct or
modifier declaration
expected.

Import Path Errors Using incorrect import paths for
contract files

SimpleMultiSigWallet
SimpleDAO
SimpleLendingPool

import {SimpleDAO} from
“../../../SimpleDAO.sol";

Event Testing Errors Incorrect implementation of
event emission tests

BasicToken
SimpleLendingPool

vm.expectEmit(contractInstance,
Transfer(owner, user1, amount));

Tuple Unpacking Er-
rors

Mismatch between tuple compo-
nents defined and returned

SimpleDAO
(„,uint256 forVotes,
uint256 againstVotes„„) =
dao.proposals(proposalId);

Undeclared Identifier Referencing events or functions
that do not exist in the contract

SimpleLendingPool emit Deposit(user1,
depositAmount);

State Transition As-
sertions

Incorrect understanding of con-
tract state transitions

SimpleDAO assertion failed:
Pending != Active

Function Parameter
Errors

Incorrect function parameters or
argument handling

SimpleMultiSigWallet Expected ‘,’ but got ‘;’

Method Not Found Attempting to call non-existent
contract methods

SimpleLendingPool pool.updateBorrowInterest(user1);

Note: Errors are categorized by severity and frequency. Red highlights indicate errors that completely prevented compilation, while yellow
highlights indicate runtime failures. The SimpleMultiSigWallet contract exhibited the highest rate of critical errors.
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