
Decoding the Critic: A Semantically
Aware Movie Recommender System

Grant Doan, Prayash Joshi, Reagan Orth, Ved Patel

November 16, 2025

1 Abstract

Creating a movie recommendation system
remains a challenge, as many existing ones
need help with issues such as cold start, data
sparsity, scalability, the filter bubble issue, and
Sentiment Consistency and Ambiguity. Our
project aims to create a recommendation sys-
tem that accommodates the entirety of a user’s
interest by creating a model that focuses on the
similarities between different users. By creat-
ing such a system, we will counter the common
issue of recommendations centered around only
one movie. Additionally, as users input more
reviews into our system, recommendations can
reliably improve. The approach for our system
consists of two scraped datasets, one of which
consists of all data associated with a particular
movie and another which consists of significant
reviews. Using natural language processing,
we can isolate specific film elements that users
prefer, such as actors or directors. Next, we
created a graph neural network that used the
movie dataset to create movie similarity map-
pings. Finally, we created a recommendation
algorithm that used different metrics to recom-
mend movies.

2 Technical Description

2.1 Introduction

2.1.1 Problem Description

Movie recommendation systems always have
biases, and a successful system will eliminate
as many of these as possible. A very prominent

example is popularity, because people trying
to see the best films of all time tend to watch
many of the same, unrelated movies. In the
IMDb recommended selections for Mr. Smith
Goes to Washington (a 1939 comedy/drama
about a boy scout leader who becomes a moral
idealist US senator), we can find the film
Wages of Fear (a tense 1955 French suspense
thriller about hired drivers transporting dan-
gerous explosives across a hazardous road).
Both are highly rated films, but they have very
little do with each other, and there is little rea-
son to believe that a user who likes one will
like the other beyond the fact that both are old
and filmed in black and white. A more modern
example is that Lord of the Rings (a fantasy
journey film), Joker (a dystopian antihero film)
and Interstellar (a huge-production sci-fi space
travel film) are recommended on the page for
The Shawshank Redemption (a relatively slow-
paced, atmosphere- and feeling-driven prison
film). None of these three recommended films
have a single prison scene, they don’t share
starring actors or a director, they don’t share
the slow pace, and as a whole are very different
films that appeal to very different audiences.

Another frequent issue is grouping films
with other films of similar ratings. When look-
ing at a film of rating 8.0, the recommended
films tend to be in the high 7’s and 8’s. When
looking at films of rating 5.0, the recommended
films tend to be high 4’s and low 5’s. However,
clearly every user will rate films differently,
and users will not base their ratings on the
IMDb average user rating. Therefore, we be-
lieve that although rating-based recommenda-
tion has some limited merits, it is more harmful
than helpful overall.

1



2.1.2 Motivation

The goal of this project is to create a movie
recommendation system that removes common
biases and issues with the popular systems to-
day. Movie preferences are very complex, and
it’s often fairly difficult as a viewer to know
what kinds of films you enjoy. Even after you
know, some themes or genres are easier to find,
some are harder. In all cases we’re confronted
with the problem that we do not know how
much we will like a movie until we see it, which
costs us between one and four hours for each
one. Online lists can be very helpful, reading
reviews and watching trailers might sway one’s
opinion or give a little indication of how good
the film will be, but there is no way to ever
know for sure.

In order to solve this problem, we have cre-
ated a recommendation system that takes in
commentary from users who have already seen
the movies, and uses that information to bet-
ter understand if it might apply to the user in
question. In this manner, we have been able to
predict how much the user will enjoy a movie
to some degree of accuracy, which in turn will
allow the user to watch more movies that they
enjoy and fewer that they dislike.

2.2 Literature Review

General overviews of the recommendation
system research space decompose filtering
methods into 3 categories, each with their own
frameworks and methodologies of execution:
Content based filtering, collaborative filtering,
and hybrid filtering. Each of these filtering ap-
proaches are addressed along with recent exe-
cutions in the literature space.

2.2.1 Content Based Filtering

Content based filtering takes the approach
of finding items that share characteristics mo-
tivated by the idea that if a user enjoys item
A, and item A is similar to item B, then the
user in focus will enjoy item B. As a user,
it is easy to find similarities between movies
through making the connections between gen-
res, actors or actresses, directors, and other
qualitative factors, but for machines, quanti-
fying these things precisely and efficiently is
the focus of nearly all of the current land-

scape of recommendation systems. A con-
tent based recommendation system approach
supplied by Pujahari and Sisodia in 2022 pro-
pose matrix factorization-based feature refine-
ment using textual data. Term Frequency In-
verse Document Frequency (TF-IDF) extracts
the essential words or phrases in the text docu-
ments and displays it in a vector space, weigh-
ing highly reoccurring words as essential. In
order to combat the sparsity issue that plagues
vectorization of text data, the authors use a
factorization technique that attempts to lower
the dimension finding factors that correlations
that are redundant and optimizing feature re-
finement. The item feature matrix F is sub-
ject to reduction based on projecting the fea-
ture matrix on a vector W where that vec-
tor is the combination that either includes or
doesn’t include a certain quality in the similar-
ity measure. This is upheld by the constraint
that Wt ∗W = I. Therefore, by finding opti-
mal matrix of weights for our feature space,
sparseness and redundancy between factors is
minimized. Furthermore, finding optimal val-
ues for W allows them to select the most im-
portant features for consideration by the sys-
tem, which is a trade off if there is a limitation
on existing computing power. They then pro-
pose an iterative optimization process for W
and another factor K which is the coefficient
matrix used for projecting the original item’s
feature space to the selected feature space.

2.2.2 Collaborative Filtering

Collaborative filtering removes the item
from consideration and is motivated only by
the idea that a user with similar taste gives a
better idea of items a user may enjoy. This
space takes advantage of potentially recom-
mending items that are outside of what the
user considers their ”taste”, but may still
be in line with something they enjoy. In
The Adaptive Web, by Ben Schafer, Dan
Frankowski, Jon Herlocker, and Shilad Sen,
a primary technique to accomplish the task
of finding neighbours to a target users uses
k-Nearest-Neighbors to classify a target pro-
file with historical and current data of other
users in an effort to classify based on similar
preferences [2]q. Similarity between users
to classify into a neighbor or not a neighbor

2



has a variety of approaches. One such frame-
work supplied by Bobadilla and colleagues use
Mean square different between 2 users x and y,
given similar movies they have rated together.
Given these 2 user’s meet a similarity thresh-
old, the system begins predicting creating a
weight for how similar a user is to another
user and considers k neighbors for the predic-
tive rating of a user onto an item. Average
weighted sum and adjusted weighted aggrega-
tion are both used as predictions for ratings,
and a normalization factor is applied to these
aggregated sums based on the similarity of the
user to the user that whose rating is being pre-
dicted. This way, the nearest neighbor’s con-
tribution to the rating in question is consid-
ered as more important to the prediction than
a neighbor who is further away. The authors
explore a variety of similarity measures such
as Constrained Pearson Correlation, Pearson
Correlation, Spearman rank Correlation, co-
sine similarity, and Mean Squared Differences
to their neighbor classification systems and re-
ject MSD as out performing more conventional
measures of similarity.

2.2.3 Hybrid Filtering

Hybrid filtering alleviates the filtering sys-
tem from focusing significantly on the user and
significantly on the item, combining both to
yield recommendations of items both similar
to the taste of the user and of the taste of
similar users. In Goyani’s survey, outputs be-
tween content based methodologies and col-
laborative filtering based methodologies are
used as input for recommendation. Deng
and colleague’s work in hybrid recommenda-
tion combined used popular user-item rating
matrices as well as static feature’s pulled from
the Movielen’s database to create dynamic and
static features that are then hybridized to cal-
culate how a user may be interested in a certain
movie. This is then used to generate similar-
ity matrices and neighborsets of both movies
and users, respectively, and combined again
with the user’s item rating matrix to gener-
ate a prediction for the item. These feature
matrix calculations are sparse matrices that in-
dicate a user’s interest in a certain feature, so
for a user u and feature k, a user can be in-
terested(1) or not interested(0). The features

comprise of characteristics about the movie it-
self being things like genre, movie tags, and
other relevant information users associate with
movie content that are general across many
movies and genres. This worked in combina-
tion with kNN to predict values for movies yet
to be rated by the user in focus.

2.3 Limitations of Current Ap-
proaches

Each of these filtering methods come with
common challenges that are limited by a va-
riety of factors. Cold Start : For collabora-
tive and hybrid filtering systems, effectiveness
only comes when there are an adequate amount
of users in the system to find neighbors and,
therefore, similarity. Moreover, actually being
able to rate 2 users as similar requires even
greater specificity between the users that are
engaged with the system. Therefore, there
is trade-off between the performance of the
neighboring classification and the users that
are in the system as recommenders can at-
tempt to begin their classification with little
users, but the users that are classified as neigh-
bors to a particular user may not be similar
at all. This comes as a result of not hav-
ing nearly enough users to find similarities be-
tween, throwing off the accuracy of item rec-
ommendation. Scalability In order for our sys-
tems to create valuable insight into recom-
mending items to users, it requires we have lots
of data for the model to learn from and rec-
ommend. As a result, the more users, movies,
and other items we have added on to the model
for consideration can become a computational
burden due to the expense of processing. This
is the tradeoff that is expected when attempt-
ing to tune high functioning models that can
succeed across a wide variety of users. Paired
with the issue of data being sparse, issues arise
with the model being exposed to data that is
of high quantity but varying quality.

2.4 Proposed Approach

2.4.1 Problem Definition

Our task can be condensed into two core
mathematical problems: edge prediction for
our graph [5], and sentiment/feature extrac-

3



tion for user reviews. For the graph, we will
input film information features from our movie
dataset to gauge similarity between movies,
which we can then use for similarity measure-
ments. For the review feature extraction, this
is a matter of pulling out names, titles, genres,
and plot elements that are mentioned in the
review, as well as noting whether the review is
positive or negative overall.

2.4.2 Data Pre-Processing/Feature En-
gineering

Preprocessing and feature selection are a
critical part of any machine learning model,
and even more so in such a complex problem
as this. There are many important decisions
to make in order to prioritize different selection
optimizations, and it is therefore imperative to
include information that we believe to be criti-
cally important to recommendations, and omit
information that might cause the problems we
intend to address.

Surrounding popularity bias, we will not be
taking into account overall ratings or number
of watches/reviews. Additionally, we will try
to mitigate the effect of popularity by strate-
gically dropping reviews in an inversely pro-
portional manner to their popularity, such that
uncommon movies will keep all of their reviews
and extremely popular movies will only have a
fraction of their body of reviews.

Our data was scraped from the IMDb site,
and therefore had a number of formatting is-
sues and type inconsistencies. To clean this
dataset, we fixed all of these formatting issues,
and subsequently assigned each director, actor,
and genre to an index in order to make a binary
matrix of 0s and 1s. We also added one fea-
ture for each decade, as individual years are far
sparser and do not tend to give us much addi-
tional information. These features were chosen
from our own experience searching for movies,
and therefore are the factors that we believe
should have the largest impact on what kind
of movie each one is and which films it may be
similar to. We initially intended to make use
of the plot synopsis, but as we have achieved
meaningful results without it, we have decided
not to overly complicate the model with thou-
sands of NLP features or a condensed repre-
sentation thereof.

Our NLP step utilizes a pretrained classi-
fication model known as BERT. BERT is a
text encoding transformer that is character-
ized by deep learning bidirectional text rep-
resentations. The model is pretrained on gen-
eral purpose texts such as wikipedia and has
been pretrained to perform tasks such as senti-
ment analysis, emotion categorizations, speech
to text translation, and many others [3].

For this project, we explore aspect-based
sentiment analysis on a pretrained bert model
by classifying statements into positive, nega-
tive, or neutral categories, then use nltk to
parse out figures of speech that are the sub-
ject under review. As a result of the use of a
pretrained BERT model, we leave our text as
a whole when putting into our BERT model,
but lemmatize and tag parts of speech to find
our relevant subjects.

2.4.3 Workflow/pipeline/system archi-
tecture diagram

Our final deployment product is a movie rec-
ommender for online users. By processing a
few reviews of movies they’ve watched, we will
use a classification and recommendation model
that can find something they could enjoy. Our
model needs to go through a series of pipelines
in order to take the user’s input, launch the
model, and display the result to the user. [1]

Our project’s first phase is classification.
The classification model is trained on a fixed
dataset of IMDB movie reviews. The feature
vectors and labels are fed into our GNN classi-
fication model. We include a workflow pipeline
that takes the user input as new text, pro-
cesses its feature vectors, and runs it through
a predictive model to generate the expected la-
bels. [4]

4



2.5 Experimental Evaluation

2.5.1 Dataset Exploration and Pat-
terns

The Movie dataset is a dataset of IMDb’s top
1000 movies. We have most of the critical in-
formation for each movie, such as name, year,
director, starring actors, plot synopsis, MPAA
rating, length, and genres. The dataset is in-
herently limited to popular movies, but we be-
lieve 1000 movies will still allow us to make
meaningful recommendations. There are not
many patterns to this dataset, as the range
of movies that people love is so broad and
encompasses most facets of the film industry.
However, it should be noted that certain echo
chambers exist within this dataset, such as the
inclusion of many of the most famous foreign-
language movies and few others, or directors
that modern audiences love such as Christo-
pher Nolan or Quentin Tarantino, or popular
franchises such as The Avengers or The Lord
of the Rings. The dataset includes a mix of
popular films, classics, and hidden gems, and
does not include the 1000 most highly rated
movies, but rather uses a closed-source selec-
tion algorithm. We do know that it is largely
based on ratings that have been built up over
the past twenty-five years, and therefore cer-
tain films naturally have more attention and
certain ones have less.

An additional dataset used in our sentiment
analysis comes from user reviews of these same
top 1000 movies. We scrape information such
as the user that gave the review, the rating
of the movie, and the proportion of users that
found that movie review helpful. The review
that is scraped is the most relevant piece of
information as the content of review as this re-
view is used to the strengths and weaknesses
of a movie as well as what a user enjoys about
movies.

2.6 Predictive Model

Our predictive model comes in three parts.
The first is with sentiment analysis, where we
take in user-written reviews and predict senti-
ment on individual sentences and the aspects
that are given those reviews. We do this in an
effort to investigate which parts of a movie are
important to its ratings. For example, com-

mon strengths from a movie can be its aes-
thetics, characters, story, acting, etc. and we
aim to tag each of these movies with com-
mon strengths. We then map these strengths
for the movies we have reviews for. Further-
more, these tags can be characterize a reviewer
as well. Seeing these sentiments appear com-
monly throughout a user’s reviews gives a gen-
eral idea of the particular film elements a user
enjoys.

The second part is the forming of the graph,
where the model predicts links between movies.
This is done using a Graph Neural Network
with two SAGEConv layers, taking in an n x
m matrix of True/False features, where n is
the number of movies and m is the number
of features, and outputting an n x n matrix
of similarities. We used a similarity function
in order to train the network, which compares
features between movies and outputs similar-
ity score. In our trained model, we can clearly
see that movies with similar features tend to be
rated very similarly to each other. For exam-
ple, the most similar film to The Godfather is
The Godfather Part II, the most similar to The
Dark Knight is the two other Batman movies
in that series, and the Lord of the Rings movies
all feature the other two as the most similar.

The third part comes in the form of us-
ing our graph to predict movies to recommend.
One fault of modern recommendation systems
is that all of the recommendations tend to be
very similar to each other, so if one is not a
good recommendation then most or all of them
will not be. Therefore, we choose to use several
different algorithms, and therefore can report
a more diverse list of recommendations. For
some, we check individual movie similarity, for
others we check joint similarity, and for still
others we use the NLP-extracted features as
applicable in order to give us our output list.

2.6.1 Final results

In the Graph Neural Network section, we
have been able to build the similarities graph.
As this is an unsupervised problem (we do not
have labels in advance), we cannot compare
to any objective standard, but upon inspec-
tion we have been fairly happy with the results
from our custom similarity-based loss function.
By our subjective evaluations, the movies that

5



the graph finds similar do typically tend to be
quite similar to each other.

Fine tuning our pretrained BERT model
to our movie reviews was a simple task
in adding additional information to continue
training. Our BERT model currently does a
good job of evaluating overall sentiment from
movie reviews in totality and individual state-
ments with an accuracy of about .88 and our
loss converging on a value of about .20. How-
ever, extracting the topics that are the subject
of such reviews has been a much more diffi-
cult task as parsing out exactly which nouns
contribute or don’t contribute to the label has
been difficult. There is certainly more to be
added on to tune our BERT model in neutral-
ity detection and aspect retrieval, but an ele-
mentary classification of positive and negative
has been obtained and works with confidence.

An additional lead that was pursued in
our project was the modeling of common top-
ics in an effort to find film elements the user
enjoyed. We discovered that the aspect-based
sentiment analysis proposed as part of the
PyABSA can be fine tuned to include movie
reviews well, and can lead to better synthesiz-
ing of common elements in movie reviews [6].
Leveraging named entity recognition and sen-
timent analysis in tandem yielded outcomes
that allowed for parsed results from positive
statements to be linked with a users inter-
est, creating a more robust characterization
of the user’s preferences for our model. Re-
sults of this were observed on situational cases
where actors, plot elements, and IMDB genre’s
were parsed out by fuzzy matching. Given
that this matching required specific terminol-
ogy, the model would find positive film ele-
ments if these elements were spelled almost
correctly.

2.7 Deploying to Production

2.7.0.1 Automation

One of the team goals were to replicate
how applications are developed, deployed and
put into production in industry right now.
We’ve adopted That meant following a rig-
orous Crisp-DM methodology of problem ap-
proach. That meant understanding the busi-
ness or problem, understanding our existing
data, preparing the data, modeling it, and

evaluating it. The model is only ready for
deployment when its evaluation metrics meet
our criteria. Otherwise, the process returns
to business comprehension and iterates until
we are ready to deploy. Automation was a
crutial aspect of our production line. We util-
itzed Gitlab as our propriatary version control.
However, due to academic institution restric-
tions, we had to transferred our workflow to
github. Using verison control allowed mem-
bers to work ascyncronously and avoid con-
flicts with codebases.

Every time a commit was sent to github,
it preformed a series of actions to test the code,
check for compilation errors, and pipeline the
application to Google Cloud Run for hosting.
Note, the automation is in place such that if
there were any errors in the code, the pipeline
to website deployment would immediatly be
halted util one of the engineers on our team
resolved the issue.

2.7.0.2 Online Model

Our model is setup to collect user data and pro-
vide recommendation to the user(with varying
results based on the quality of the review).
This gave us an opportunity to obtain more
data to feed into our recommendation model,
specifically the sentiment analysis. Currently,
the data is being stored in a real-time database
but we plan to redirect those reviews to our
NLP model to train on online data coming
from the website along with our existing IMDB
reviews dataset.

2.7.0.3 Webapp

Our dynamic web app is using a flask back-
end for routing and a simple HTML,CSS and
JavaScript for the front-end. It also incor-
porates some of bootstrap’s css styling for
forms and containers. The UI is very user
friendly. There is a bi-directional flow of in-
formation(up and down). As the user scrolls
down, we summarize how our model works in
different parts and the recommender is the last
thing. Users have the ability to get person-
alized movie recommendation when they in-
sert at least 2 movies reviews. Their inputs
are sent via a JSON file to the recommender,
which returns a list of movies. The movies
are then displayed along with their respective

6



year, genre, IMDb rating, and a movie poster
that links to the IMDb site. It is hosted on
Google Cloud. The reality is that our web-
site’s front-end and back-end are under the
same docker build. Thus, when we build and
run our website on Google Cloud, it has a 2
minute cold start if the website has not been
used recently(in the last 5 minutes). This is
largely due to tensorflow loading its packages
when the website is initially warmed up. Be-
low are the preliminary website and database
review structure respectively:

(a) Landing Page

(b) Content

(c) Review Module

(d) RealTime Database

Figure 1: Frontend/Backend Integration

7



2.8 Future Work

For future recommendations, wa can work
on expanding the dataset, as we currently only
have a thousand movies; and far less than
that considering that serious movie fans will
likely have seen a large percentage of these al-
ready. Additionally, we can improve our rec-
ommendation algorithms and similarity func-
tions to give more importance to successful
characteristics and less to the harmful or irrel-
evant ones. In particular, we could utilize the
review-extracted film features to check which
films are more about their plots, and which
genres people generally associate it with rather
than the accepting the IMDb-assigned ones as
ground truth. For review processing, we would
like to improve our model’s ability to extract
important features, and find a way to assign
individual sentiment to them. Many times re-
views will not be entirely positive or negative,
and it might greatly improve our model’s ex-
pressive power if we could capture the nuances
in sentiment. As far as displaying results, we
would like to include a drop-down list and/or
have string matching in order to reduce the
need for perfect spelling in movie titles. The
website cold starts would be on the list of fu-
ture work. The possible techniques to solve
the issue are listed above. An NLP chal-
lenge faced by the team involved the quality of
training data the model was tuned on. While
results were promising with the accuracy and
loss specified above, it is important to rec-
ognize that there was significant ambiguities
and inconsistencies when reviewers gave scores
to movies and what the score reflected. The
BERT model was trained on labels between
a 1-10 scale which took anything above a 5
as positive and 5 and below as negative. Yet,
we would often observe some reviewers giving
what would be considered to be a harsh review
but still giving a positive score. While this is
a small piece of the datasets reviews, it is still
an worthwhile future change to pivot into.

Regarding our cold start issue, one pos-
sible solution is to isolate the front-end and
back-end. Our users will spend between 1 to 4
minutes to insert reviews in our website. Thus,
displaying the front-end would have no conse-
quences on how our online model is run.

Another possible solution is to narrow

down the modules causing this long load-time,
and removing unnecessary local imports in our
application. This is not a guaranteed fix but
it could optimize not only cold starts but also
the long build times.

2.9 Conclusion

As mentioned in our initial paper, reddit is
currently the most popular place to get movie
recommendations. Because it involves peo-
ple making recommendations, this is highly
biased. We want to deploy a smart auto-
mated machine learning model that can clas-
sify a user’s review of a given movie and make
a real-time recommendation. Rather than sim-
ply looking at ratings or genres, our goal is to
create a bias-free system based on the user’s
preferences.

We want to base our recommendations on
what is said about a specific movie because it
provides the most insightful information. We
will create a graph with a GNN using our web-
scraped IMDb data, including summaries and
plot synopses, and then use the graph and user
reviews to create our recommendation model.
Content-based filtering, collaborative filtering,
and hybrid filtering have all been investigated.
We used the first stages of our TF/IDF NLP
preprocessing scripts after gathering a collec-
tion of movies to web-scrape.

Sentiment analysis upon use of a pre-
trained BERT model supplied by HuggingFace
has yielded great success upon the additional
tuning including the movie reviews we scrape
from IMDb. Despite its binary classification,
it is still able to classify individual statements
with high levels of accuracy of .90 and a con-
verging loss of .20. We hope to transition build
atop this model with multi-class aspect senti-
ment analysis to find specific film elements to
connect to movies and users as to create a more
personalized character for the recommendation
system to consider. We hope to build upon the
filtering systems as mentioned in the section
1.2 by utilizing the topics that have positive
associations in user reviews.

This model will eventually help us recom-
mend movies to users. The next step is to ex-
pand our GNN, improve rating mappings, im-
prove sentiment analysis and experiment with
various other techniques.

8



2.10 Contributions

• Grant Doan - Data cleaning, Sentiment
Analysis, Review Feature Extraction

• Prayash Joshi- Docker and Cloud Inte-
gration, Dynamic Webapp, Full-Stack

• Reagan Orth - Data cleaning, GNN, Ag-
gregated Recommendation Algorithm

• Ved Patel - Web Scraping, Project Poster

References

[1] Satvik Garg, Pradyumn Pundir, Geetan-
jali Rathee, P.K. Gupta, Somya Garg, and
Saransh Ahlawat. On continuous integra-
tion / continuous delivery for automated
deployment of machine learning models us-
ing mlops. 2021.

[2] Woon-hae Jeong, Se-jun Kim, Doo-soon
Park, and Jin Kwak. Performance improve-

ment of a movie recommendation system
based on personal propensity and secure
collaborative filtering. Journal of Infor-
mation Processing Systems, 9(1):157–172,
2013.

[3] M. V. Koroteev. Bert: A review of appli-
cations in natural language processing and
understanding, 2021.

[4] Dan Ofer. Machine learning for protein
function. 03 2016.

[5] Shiwen Wu, Fei Sun, Wentao Zhang,
Xu Xie, and Bin Cui. Graph neural net-
works in recommender systems: A survey,
2020.

[6] Heng Yang and Ke Li. A modularized
framework for reproducible aspect-
based sentiment analysis. CoRR,
abs/2208.01368, 2022.

2

9


