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Logical Reasoning

« What is logical reasoning?

— the process of using structured and coherent thought to analyze
arguments, draw conclusions, and make decisions based on
evidence and principles of validity

« Why graph logical reasoning?
— Better Knowledge Representation
— Inter-displinary Application
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Research Questions

* Q1. How can we represent complex logical queries, and
different logical operators?

o Challenge: Prior work models queries as single points in the vector
space, while complex queries could represent many different entities
scattered in space.

o Challenge: Prior work only covers a subset of the query types and
operator types.

* Q2. How can we create better embeddings for different logical
operators?

o Challenge: Prior work suffer from model deficiency, which would
lead to cascading errors.

* Q3. How can we leverage the ability of LLMs in KG related
tasks, such as KGQA?

o Challenge: LMs cannot interact with KGs well.




Overview

Algorithm 1: Query2Box
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Figure 2: Illustration of our probabilistic intersection operator Z (left) and probabilistic negation
operator N (right). Z transforms the input distribution by taking the weighted product of the PDFs;
N transforms the input distribution by taking the reciprocal of its parameters.

— N(S)

C3: Language Model with

C2: Refined Embedding for
Logical Operators

Algorithm 3: NewLook
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Key Challenges

- Modeling sets in Vector Space
o Preceding papers represent queries as single
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Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
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Problem Statement

Given a complex logical query and an incomplete Knowledge Graph,

1. efficiently model and reason over sets of answer entities in a vector space
2. handle arbitrary Existential Positive First-order (EPFO) queries

3. scale to large KGs and generalize to unseen query structures and missing relations

Geometric projection &

Entity: point, Set: box — | EPFO queries to DNF R Train with negative sampling

intersection

.

Evaluate on complex queries

Key Components:

Box Embeddings

— Hyper-rectangles in vector space
Geometric Operators

— Projections for relational transitions, intersections for modeling logical conjunction
Disjunctions

— Query transformation into Disjunctive Normal Form

Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
I .//doi.ore/ 10.48550/arXiv.2002.0596
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Algorithm

Algorithm 1 Query2Box: Initial Setup of Box Embeddings

L

& o

Input: Knowledge graph G = (V| R) with entities v € V and relations r € R

QOutput: Box embeddings for entities
Initial Setup of Box Embeddings:
for each entity v € V do

Represent v as a zero-sized box (v, () centered at the entity’s position

end for

Algorithm 2 Query2Box: Geometric Operations

oo

10:

11;

He e W

Input: Relations r € R with box embeddings and input box p = (Cen(p), Off(p))
Output: Projected and intersected boxes
Projection Operator:
for each relation r € R do

Define box embedding r = (Cen(r), Off(r))
end for
Compute projection:

p+ 7 = (Cen(p) + Cen(r), Off(p) + Off(r))

Intersection Operator:
Given multiple boxes py,pa,...,pPn
Calculate the center:

exp(MLP (p;))

Cen(pinter) = a; - Cen(p;), where a; = -
D) Z ! >~ ; exp(MLP(p;))

Calculate the offset using minimum operation and DeepSets transformation:

Off(pinter) = Min({Off(p1), ..., Ofi(p,)}) © o (DeepSets({pi,....pn}))

10
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Algorithm cont’d

Algorithm 3 Query2Box: Distance Function
1: Input: Query box g, entity v
2 Qutput: Distance measure between g and v
3: Define distance between query box g and entity

distpex (v ¢) = distoueside (v §) + o - distinsige(v; g)

Algorithm 4 Querv2Box: Training Objective and Disjunction Handling

1: Input: Query box ¢, positive entity v, negative samples v}

2: Qutput: Trained model and evaluation for disjunctive queries
3 Training Objective:

4: Train the model using negative sampling loss:

| b=t

L= —logo(y — distpee(v;q)) —

S

IL.
) FoyE S e
E log o(distue(v;: ) — )
5: Here, v is a positive entity, v; are negative samples, v is a margin, and k is the number of negative
samples.
6: Handling Disjunctions with DNF Transformation:
7: Convert queries with disjunctions into Disjunctive Normal Form (DNF)
8: For each conjunctive sub-query in DNF, compute separately and agpregate:

distage (v ) = min{{distye.(v; g™, ... distpee (v g™

9: Here, N is the number of conjunctive sub-queries in DNF.

Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
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Experiment

Dataset Entities | Relations | Training Edges | Validation Edges | Test Edges | Total Edges

FB15k 14,951 1,345 483,142 50,000 59,071 592,213
FB15k-237 | 14,505 237 272,115 17,526 20,438 310,079
NELL995 | 63,361 200 114,213 14,324 14,267 142,804

Table 5: Knowledge graph dataset statistics as well as the split into training, validation, and test sets.

Queries Training Validation Test
Dataset 1p others 1p others 1p others
. FB15k 273,710 | 273,710 | 59,097 | 8,000 | 67,016 | 8,000
- Experiments on three standard KG benchmarks FBI5k-237 | 149,689 | 149,689 | 20,101 | 5,000 | 22,812 | 5,000
(Ta ble 5 ) NELL995 107,982 | 107,982 | 16,927 | 4,000 | 17,034 | 4,000

o FB15k, FB15k-237, and NELL99

- Evaluate on 9 diverse query structures (Figure 4)
o Train on 5 conjunctive structures
o Test on 9 unseen conjunctive queries

Table 6: Number of training, validation, and test queries generated for different query structu.

Unseen Conjunctive Queries Union Queries

A

Training Conjunctive Queries

A

A
Goal: s ™ ~ N . T
Focus on answering queries requiring multi-hop 0-0 0-0-0 0-0-0-0 GO %D o0 Tgo Zp Gp-o
reasoning over incomplete KGs 1p 2p 3p 2i 3i ip pi 2u up

o Use Hits@3 and Mean Reciprocal Rank
(MRR) as evaluation metrics

Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
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Results 1

Method | Avg | 1p 2p 3p | 2i 3i | ip pi 2u up
FB15k

Q2B 0.484 | 0.786 0.413 0303 | 0.593 0.712 | 0.211 0397 0.608 0.33

GQE 0.386 | 0.636 0.345 0.248 | 0.515 0.624 | 0.151 0.310 0.376 0.273

GQE-DOUBLE | 0.384 | 0.630 0.346 0.250 | 0.515 0.611 | 0.153 0.320 0.362 0.271
FB15k-237

Q2B 0.268 | 0467 0.24 0.186 | 0.324 0.453 | 0.108 0.205 0.239 0.193

GQE 0.228 | 0402 0.213 0.155 | 0.292 0406 | 0.083 0.17 0.169 0.163

GQE-DOUBLE | 023 | 0405 0.213 0.153 | 0.298 0.411 | 0.085 0.182 0.167 0.16
NELL995

Q2B 0.306 | 0.555 0.266 0.233 | 0.343 048 | 0.132 0.212 0.369 0.163

GQE 0.247 | 0418 0.228 0.205 | 0.316 0.447 | 0.081 0.186 0.199 0.139

GQE-DOUBLE | 0.248 | 0417 0.231 0.203 | 0.318 0454 | 0.081 0.188 0.2 0.139

Table 2: H@3 results of QUERY2BOX vs. GQE on FB15k, FB15k-237 and NELIL995.

where fmeuics(z) = % for MRR, and fieyics(z) = 1[z < K] for HQK.

- Q2B achieves higher Hits@3 across all datasets (FB15k, FB15k-237, NELL995) compared to GQE
and GQE-DOUBLE.
- Box embeddings effectively capture sets of entities, outperforming point-based embeddings
(GQE)
o Demonstrates strength of box-based modeling in higher embedding dimensions

Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
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Results 2

14

Method | Avg | 1p 2p 3p | 2 3i | ip pi 2u up
FB15k
Q2B 0484 | 0.786 0.413 0.303 | 0.593 0.712 | 0.211 0.397 0.608 0.330
Q2B-AVG 0468 | 0.779 0407 0.300 | 0.577 0.673 | 0.199 0.345 0.607 0.326
Q2B-DEEPSETS 0467 | 0.755 0407 0.294 | 0.588 0.699 | 0.197 0.378 0.562 0.324
Q2B-AVG-1P 0.385 | 0.812 0.262 0.173 | 0.463 0.529 | 0.126 0.263 0.653 0.187
Q2B-SHAREDOFFSET | 0.372 | 0.684 0.335 0.232 | 0442 0.559 | 0.144 0.282 0417 0.252
FB15k-237
Q2B 0.268 | 0.467 024 0.186 | 0.324 0.453 | 0.108 0.205 0.239 0.193
Q2B-AVG 0.249 | 0462 0242 0.182 | 0.278 0.391 | 0.101 0.158 0.236 0.189
Q2B-DEEPSETS 0.259 | 0.458 0.243 0.186 | 0.303 0432 | 0.104 0.187 0.231 0.190
Q2B-AVG-1P 0.219 | 0457 0.193 0.132 | 0.251 0.319 | 0.083 0.142 0.241 0.152
Q2B-SHAREDOFFSET | 0.207 | 0.391 0.199 0.139 | 0.251 0.354 | 0.082 0.154 0.15 0.142
NELL995
Q2B 0.306 | 0.555 0.266 0.233 | 0.343 0.480 | 0.132 0.212 0.369 0.163
Q2B-AVG 0.283 | 0.543 0.250 0.228 | 0.300 0.403 | 0.116 0.188 036 0.161
Q2B-DEEPSETS 0.293 | 0539 026 0.231 | 0.317 0467 | 0.11 0.202 0.349 0.16
Q2B-AVG-1P 0.274 | 0.607 0.229 0.182 | 0.277 0.315 | 0.097 0.18 0.443 0.133
Q2B-SHAREDOFFSET | 0.237 | 0436 0.219 0.201 | 0.278 0.379 | 0.096 0.174 0.217 0.137

Table 3: H@3 results of QUERY2BOX vs. several variants on FB15k, FB15k-237 and NELL995.

- Q2B with attention-based intersection (Q2B) outperforms variants like Q2B-AVG and
Q2B-DEEPSETS
o Attention in intersection operations shows promising results
- Models with adaptive box sizes (Q2B) yield better results than fixed-size variants (Q2B-
SHAREDOFFSET)

Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
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Takeaways

From this paper we got:
- Flexible Box Embedding for Logical Operations
- Improved accuracy on standard benchmarks
- Robust generalization to unseen queries and multi-hop reasoning tasks

Following papers citing Query2box explored:

* LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on
Knowledge Graphs

* Deep Bidirectional Language-Knowledge Graph Pretraining

* QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question

Answering
(A) Original Computation Graph (B) Converted Computation Graph
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First-order logic queries(FOL)

Vis the set of entities. A first-order logic query g consists of a non-variable anchor entity
set Va c 'V, existentially quantified bound variables V7, ..., Vkand a single target
variable V2, which provides the query answer. The disjunctive normal form of a logical
query q is a disjunction of one or more conjunctions.

q[Ve] =V, . 3AVh, ..., Vet Ve V... Ve,

1. Each c represents a conjunctive query with one or more literals e.

ci =¢€e;1 Neia/N\---N\€im
2. Each literal e represents an atomic formula or its negation.
eij = 1(va, V) or ~r(ve, V)or r(V', V) or = r(V',V)

,whereva e Va, Ve{V, V1,..., Vi, V' e{V1, ..., Vi, V#V’, r €R and each
relation type r € R is a binary function r: V X'V — {True, False}

17



Computation Graph and Logical Operators

GivenaFOL ¢ =1V, .3V : Located(Europe,V) A = (World Cup,V) A President(V,V,) ,
we can derive its corresponding computation graph by representing each atomic formula with
relation projection, merging by intersection and transforming negation by complement as follow,
which demonstrates the computation process to answer the query

Europe
P @ Located >C}',,.”Ir'ItE'rSE.-c,ticm
,.-: President
Negation __,+* .
World CupQ) O=g=>o Intersection

Each node in the computation graph represents a distribution over entities in the KG, and each
edge applies a logical operator that transforms this distribution, including operators such as
projection, conjunction, disjunction, and negation.

1. Relation Projection: Given a set of entities S £ V and relation type r € R, compute adjacent
entities Uves A, (v) related to S via r: A,(v) = {v' € V: r(v,v") = True}

2. Intersection: Given sets of entities {51, 92,...,5,} , compute their intersection N};S5;

3. Complement/Negation: Given a set of entities S £ V, compute its complement S =V\ S

4. Disjunction/Union: Accordina to the De Morgan’s laws, given sets of {S1,82,...,8n}

etUi 1 5i , NS isequivalent to

18



Motivation

Previous works only support existential positive first-order (EPFO) queries, a subset of
FOL queries with existential quantification (3), conjunction (A) and disjunction (Vv), but
not negation (—) because these methods embed queries as closed regions.

However, negation is a fundamental operation and required for the complete set of
FOL operators.

Object of this work:

Defining a probabilistic embedding framework for answering arbitrary First-order logic
queries queries over KGs which can handle a complete set of first-order logical
operations: conjunction (A), disjunction (Vv), and negation (-)

19



Beta Embedding

In order to define negation/complement, the authors propose to embed both the entities

and queries into the same space using probabilistic embeddings with bounded support.

And Beta distribution Beta(a, ) which has two shape parameters is able to modeling a

range of probability densities v(vith)iﬁn a bounded interval [0, 1]. The density function of
¢ (1—z)P 1

Beta distribution is p(z) = Bad) — where x € [0, 1] and B(-) denotes the beta
function.

A Beta Embedding consists of multiple independent Beta distributions which can be
represent with the parameter of each beta distribution as S = [(au, B1), . . . ,(an, Bn)],
where n is a hyperparameter for the dimension.

1. For entities, each entity are viewed as a set with a single element and assigned an
initial Beta embedding with learnable parameters.

2. For queries, each query is embedded as a Beta embedding which is calculated by a
set of probabilistic logical operators following the computation graph




Properties of Beta Embedding

1. Naturally model uncertainty

The uncertainty of a Beta distribution can be measured by its differential entropy as

u=H=mB(a,p)—(a—-Dlpla) —yPla+p)| = (B -DPPB) —pla+p)]

where (-) represents the digamma function

which can be applied directly to estimate the uncertainty for Beta Embedding

2. Logical/Set operators (conjunction/intersection and especially
negation/complement) are closed

1. Given Beta embedding S, S is a fixed pointof N o N: N(N(S)) = S

2. Given Beta embedding S, we have Z({S,S,...,S}) =S




Logical Operators

By embedding both the entities and queries into the same space by assigning initial Beta
embeddings with learnable parameters S = [(a1,51),- .., (an,Bn)lerenis a
hyperparameter, the Logical Operators can be formulated as follow

Probabilistic Projection Operator P

Mapping S to S’ with relationship r by S’ = MLP,.(S)

Probabilistic Negation Operator N
Negation Operator can be defined as N ([(@.8)]) = (5. 3)]

0.0 0.5 1.0 0.0 0.5 1.0

22



Logical Operators

Probabilistic Intersection Operator |
Given n input embeddings {S1;---, Sn} | Intersection Operator | can be defined by taking the

weighted product of the PDFs of the input Beta embeddings
1 . :
PSuee = 7 [I»8:...p8"

Where ps is the Beta distribution PDF for embedding S, Z is a normalization constant and wi,---,wn
are the weights with their sum equal to 1 which are calculated as follow

exp(MLPat(Si))
>_; exp(MLPaee(S;))

w; =

With the property of Beta distribution, we can derive Sipier as [(D- wia;, > w;3;)] when S =
[((1‘1.‘31)]

. 8,
- 8,
— I({ $4,8z2})

0 02 0571 10 0.474 i
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Training Objective

Training Target

Minimize the distance between the Beta embedding of a query and its answers while maximizing
the distance between the Beta embedding of the query and other random entities via negative
sampling

k
1
L= ~logo (7~ Dist(v;q)) — ) ; logo (Dist(vjiq) —7)
j=1

And the distance between entity v and query q is defined as

Dist(v; ZKL (Pv.i Pq.i)s

24



Experiments: QA

. . . . 2u up
Dataset Model 1p 2p 3p 2i 3i pi ip DNF DM | DNF DM avg
BETAE | 65.1 25.7 24.7 | 558 66.5 | 43.9 281 | 40.1 250 | 25.2 254 | 41.6
FB15k Q2B 68.0 21.0 142 | 551 66.5 | 394 26.1 | 35.1 - 16.7 - 38.0
GQE 546 153 108|397 514|276 19.1 | 22.1 - 11.6 - 28.0
BETAE | 39.0 10.9 10.0 | 28.8 425 | 224 126 | 124 11.1 9.7 99 | 20.9
FB15k-237 | Q2B 40.6 94 6.8 [ 295 423|212 12.6 | 11.3 - 7.6 - 20.1
GQE 35.0 7.2 53 | 233 346 | 16,5 10.7 8.2 - 5.7 - 16.3
BETAE | 53.0 13.0 114 | 376 475|241 143 | 122 11.0 | 8.5 8.6 | 24.6
NELL995 Q2B 422 140 11.2 | 333 445|224 168 | 11.3 - 10.3 - 22.9
GQE 328 119 96 | 275 352|184 144 | 8.5 - 8.8 - 18.6

Table 1: MRR results (%) of BETAE, Q2B and GQE on answering EPFO (3, A, V) queries.

PS: p projection, i intersection, n negation, u union

25




Experiments: Uncertainty vs. Answer Size

Dataset Model 1p 2p 3p 2i 3i pi ip 2in 3in inp pin pni
FB15k Q2B 0.301 0.219 0.262 | 0.331 0.270 | 0.297 0.139 - - - - -
BETAE | 0.373 0.478 0.472 | 0.572 0397 | 0.519 0421 | 0.622 0.548 0.459 0.465 0.608
FB15k.237 Q2B 0.184 0.226 0.269 | 0.347 0.436 | 0361 0.199 - - - - -
BETAE | 0.396 0.503 0.569 | 0.598 0.516 | 0.540 0.439 | 0.685 0.579 0.511 0468 0.671
NELL995 Q2B 0.154 0.288 0.305 | 0.380 0.410 | 0.361 0.345 - - - - -
BETAE | 0.423 0.552 0.564 | 0.594 0.610 | 0.598 0.535 | 0.711 0.595 0.354 0.447 0.639

Table 3: Spearman’s rank correlation between learned embedding (differential entropy for BETAE, box
size for Q2B) and the number of answers of queries. BETAE shows up to 77% relative improvement.

Ip 2p 3p 21 31 pi ip 2in 3in inp pin pni
0.825 | 0.766 | 0.793 | 0.909 | 0.933 | 0.868 | 0.798 | 0.865 | 0.93 | 0.801 | 0.809 | 0.848
Table 4: ROC-AUC score of BETAE for all the 12 query structures on classification of queries
with/without answers on the NELL dataset.
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Background

Which president of USA was born in Texas or North Carolina, but was not a republican?

‘ penublican @ Projection M;
Republican i R leﬁﬁienceMB ;l ® ° 7| e © 7| @ o]
u Projectio 1 Intersection ’n wasBornin @ wasBornin @ wasBornin @
Taxas Texas - - M. Texas Texas
A \ ® johnson ® Johnson
) M Difference M 7 p
USA USA .Pro;ectlonl Oz — Union 11 ® Eisenhower ® Eisenhower
Intersection b USA USA is Republican
Projection M9 Union isPresidentOf isPresidentOf —
. Republican @———>)_Difference 7/ 1
Republican u3 M -~ ® Andrew
North North ‘m‘»o:}lntersectionM ’:CjM wasBornin @ polk wasBornin @ polk
Carolina Carolina S D;f 10 North _. North ®
Lo ifference Caroli Carolina
USA USA Projection MS_ - 2roling °® o)
isPresidentOf . 'O Intersection
Logical query graph Computation graph Step 1 Step 2 Step 3

* Query graph

o We can transform a question into a logical query graph

o e.g.: Who is the spouse of Obama -> ? ---(is married to)---> Obama
 Logical Operations

o Projection, Intersection, Difference, Union

o Operating on box embeddings

28



Challenges and Previous Work

* Previously: Sub-graph
matching

o Real-word graphs are often
incomplete

o Empty answer, wrong answer,
high computing time
* Recently: Embedding-based
methods

o Cascade of errors, especially
in long and complex queries

o Limited support of operators

What we expect -
s (WO, W ~ Rl - 4
~ —
Milia Obama « Jparent irror X ' i - 1
i

|
Barack Obama ~ ] . i i
Barack Obama Sr. ~ - ey | !

(a)TransE Projection (b)Query2Box Projection {c)NewLook Projé:té;;\
Figure 5: Comparison of different methods for modeling
projection operation. Both TransE (a) and Query2Box (b) suf-
fer from severe cascading errors. The proposed NEwLook
(c) models the projection as a linear transformation (the
dashed boxes), followed by a nonlinear process (the solid
boxes above the corresponding dashed boxes). NEwLooOK is
able to mitigate the cascading errors by adaptively adjusting
the center and offset of the projection box.
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Operators: What and How

O O

Computation Graph Box Embedding Generation
Construction

- - - - - - . - e e e,

& . :
Projection \
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] \
1 1
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 @—O 1
1
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 Instead of modeling projection as linear transformation, this
paper uses neural network to learn the projection operation

 Adaptively adjust the center and offset of the box,
which which mitigates the cascading error problem.

bf = bf, +pf b? = py
21 = MLP(b¢) 22 = MLP(b?) (2)
by = MLP(z1]|zz[|xy,) b = MLP(z1]|22||xy,)
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Intersection and Difference

Attention  — ¢ ¢
Neural Network 3 — @1 O bj+a; O b;

b}, b5 Centermp ’ Center b§

l+—&
4 Attention i1
b 1 ‘ b 1 ®——»{ Neural Ne:worlt ~13_
b,
b3 b 3
b5, b9, b, b3 Offset W) d B Offset b3

Figure 6: An illustration of intersection operation. Given
three boxes b;, b2 and b; on the left, whose intersection is
empty in the training set but not in the ground truth. A neu-
ral network approach based on attention mechanism and
deepset can result in a reasonable box b, on the right.

z=|b{ — b5| — b5

3=w Obj+w, Oz
Figure 7: An illustration of difference operation. The pro-
posed NEwLoOK uses two attention networks to learn the
center and offset of the box embedding bs, with the help of
z to indicate if and how the two input boxes are overlapped
with each other.

1 -
zj= . _ , o exp(MLP(bS)))
C [Relu(xy, - xu,) B° = Min({bS, ...b2}) k= exp(MLP(by ) "I o ["dLI"ih"r}
o o Z; = |br_ _-htl +-h.::l _'b:.:l (i = &..,k‘.l i=1 i i)
exp(ziMLP(b¢|[b7)) k 1D 1 By .

a; = e _ & exp({MLP(z;}) c c
k - bS =Y a; @b (3) - bS = % ag ©bE

*_exp(zp MLP(b¢ |[b° ¢ Wi : K (4)
2 exp(zgMLP(b{ |[b%)) ; i t+ 3%, exp(MLP(z;)) ; :

' k
~t+ Ik, exp(MLP(z)) by = ;w, o by

b? = b° © o(w) w,

k
w = MLP[Muaan MLP(b¢|[[b%)))
i=1

32



Training

» Generate a set of queries together with their answers, and
then learn entity embedding, relation em- bedding and
geometric logical operations at the same time

» Use negative sampling to optimize the model

L= 3 [-logo(y-d(sb)) — A |[Relu(x, - xy;) 1)
quU?

®)
1 n
= mzzl log (A * |[Relu(xp,y — xuj) 11 + d(0m,bj) — ¥)]
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Dataset and Evaluation Metrics

Training Queries Unseen Queries

A
4 R %7 i N
o> 0P O-—1—p :>I §I :>Q §> :> —~p .) :>‘ :>(>"> :>»
1p 2p 3p 2i 3i 2d 3d ip pi 2u up dp

(a) For evaluating queries with a single target variable node

) /‘/é’\ 3 /L @ Anchor node <> Union node
. N A 5 4\ 6
}34 g } 3 g 2 2 i 2 g 2 /\ Projection node () Difference node
) b é 6 6 || Intersection node
2ipp 2ippu 2ippd 3ipp 3ippu 3ippd

(b) For evaluating queries with multi-variable nodes.
Figure 8: Query structures used in the experiments, where ‘p’, ‘i’, ‘d” and “u’ stand for ‘projection’, ‘intersection’, ‘difference’ and

union’, respectively. Numbers before ‘1’, ‘d’ and ‘u’ denote their input size (i.e., the number of anchor nodes). Number before
‘p’ denotes the length of the path (i.e., the number of projection operations)

Dataset: FB15K, FB15K-237, NELL
e Metric: Hit@k

H@Kig) = |Al j L{Rank(ov) < K)
i

] LIEH.,.I.
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Experiment Results

Table 2: Answering queries with a single target variable node. NLK refers to NEwLook, Q2B refers to Query2Box.
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Duery p 2p Ip 2 3i ip p Zu up 2d 3d dp Average
Method |GOE]ozB]Nk|coE[ 028Nk |GoEpep] Nk |GoE]oze]Nuk]coE|oza|nuk[coE]oap]nik]|coeloze] ik coefoss]nik|coE]ozr] Nk coE oz k] coe] oz]nis|coE|pza]NLk] coE]oza]nik
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po 2MMine Training Time VS Average MRR Table 3: Answering queries with multi-variable nodes.

: ®  Newlook FE15k — _ - _ —
«oae) 4 Mook PEIOKZ7 Method | GQE | Q2B | GRay | FilM | GFinder | NEwLook
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Figure 9: Average MRR results on the QueryZBox datasets. Average | 0500 | 002 | 0053 | 001 o 0696
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Background

 ODQA Overview: Requires models to answer questions beyond
the immediate context.

« Challenges with Traditional Language Models: Closed-
Book Models lack external knowledge coverage.

- Advantages of Knowledge Graphs (KGs):

1. Compact Knowledge Representation: Triples offer
efficient storage and retrieval.

2. Logical Reasoning: KGs allow for path-based
reasoning to fill knowledge gaps.
e Current Limitations in KG and LM Integration:

— Most methods use LMs as parsers, limiting deep interaction and
multi-hop reasoning.

Paper: Empowering Language Models with Knowledge Graph Reasoning for Question Answering
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Research Questions

* How can reasoning within knowledge graphs be effectively integrated into
language models to enhance their performance in Open-Domain Question
Answering (ODQA)?

* How does multi-hop reasoning within knowledge graphs help language
models answer complex questions?

 How can reasoning paths be generated alongside answers to enhance
model explainability?

Paper: Empowering Language Models with Knowledge Graph Reasoning for Question Answering
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Problem Definition #1

 Knowledge Storage and Reasoning: Limited explicit
storage in LMs, difficulty answering complex, knowledge-rich
questions.

« Multi-Hop Reasoning: Need for multiple steps to reach an
answer; existing models often limited to single-step
reasoning.

- Explainability: Transparency in reasoning paths is often
lacking, affecting interpretability.
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High level idea

The proposed OREOLM in the paper includes a key
component—the Knowledge Interaction Layer (KIL). Its design
approach is as follows:

 Interactive Reasoning Mechanism
e Multi-step Reasoning Path

* End-to-End Training
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One example for pretraining model

Wiki-Passage: After [T A s defeat in [[IHAIE=E]

WD and... influenced by the cultural experimentation such
as [S-ENT] constructivism [REL][T- ENT] ...... [S-ENT] Bauhaus
[REL][T-ENT] also known as natior , Was ...

Grounded Dependency Graph: w
country
- . H f
Bauhaus found? | Walter Gropius :}waro m

O
@,,;@/)
¥

[ Mid- -century eriyey
Modern

International
d Style (Architect)

.

De stijl

D - in-context entities
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Style

Constructivism
(art style)

Instance of
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Experiment Analysis-1

Models #param | NQ WQ TQA | ComplexWQ HotpotQA
T5 (Base) 0.22B 259 279 29.1 11.6 22.8
+ OREOLM (7T'=1) 0.23B +0.68B | 28.3 30.6 324 20.8 24.1
+ OREOLM (1'=2) 0.24B + 0.68B | 289 31.2 33.7 23.7 26.3
TS5 (Large) 0.74B 28.5 30.6 359 16.7 253
+ OREOLM (T=1) 0.75B +0.68B | 30.6 32.8 39.1 24.5 28.2
+ OREOLM (7'=2) 0.76B + 0.68B | 31.0 34.3 40.0 27.1 314
T5-3B (Roberts et al., 2020) 3B 304 336 434 - 27.8
T5-11B (Roberts et al., 2020) 11B 326 372 50.1 - 30.2

Table 2: Closed-Book Generative QA performance of Encoder-Decoder LM on Single- and Multi-hop Dataset.

Models Hparam (B) | WOQ-SpP TOQA
EaE (Féevry et al., 2020) O.11 +~ 0.26 62.4 24 .4
FIL.M (Verga et al., 2021) 0.11 +~0.72 78.1 37.3
KEPLER (Wang et al., 2019) 0.12 48.3 24.1
RoBERTa (Base) 0.12 43.5 21.3
+ OREOL M (1'=1) 0.12 +~ 0.68 80.1 39.7
+ OREOL M (7'=2) 0.13 +~ 0.68 S80.9 40.3
A blation Studies

RoBERTa + Concat KB + £ < < ng 0.12 | 471 22 .6
+ OREOL M (7'=2) w/o PT 0.13 +~ 0.68 46.9 22.7

w. L s .5 ng 0.13 +~ 0.68 51.9 26.8

wW. L s ospng v L et 0.13 + 0.68 68.4 35.7

Table 3: Closed-Book Entity Prediction performance
of Encoder .M on WikiData-Answerable Dataset.
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Experiment Analysis-2

Models #param (B) NQ TQA
Graph-Retriever (Min et al., 2019) 0.11 34.7 55.8
REALM (Guu et al., 2020) 0.33 +16 40.4 -

DPR (Karpukhin et al., 2020) + BERT 0.56 + 16 41.5 56.8
+ OREOLM (DPR, T'=2) 0.57 + 17 43.7 58.5
FiD (Base) = DPR + T5 (Base) 044 + 16 48.2 65.0
+ OREOLM (T5, T'=2) 045 + 17 49.3 67.1
+ OREOLM (DPR & TS5, T'=2) 046 + 17 51.1 68.4
FiD (Large) = DPR + TS5 (Large) 0.99 + 16 514 67.6
+ OREOLM (T5, T'=2) 0.99 +17 524 68.9
+ OREOLM (DPR & TS5, T'=2) 1.00+ 17 53.2 69.5
KG-FiD (Base) (Yu et al., 2022a) 044 + 16 49.6 66.7
KG-FiD (Large) (Yu et al., 2022a) 0.99 + 16 53.2 69.8
EMDR? (Sachan et al., 2021b) 044 + 16 52.5 71.4

Table 4: Open-Book QA Evaluation.
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Tests OREOLM's ability to reason about missing

relationships

80 0.47 — P551: livesin
~ P35; president: <, 0.37 -~ P22: father
036 P35: president: <533—. p397: work location (Query) P26: spouse = 074 oa0: child <
60 (Query) P36: capital = I 0.35 P25: mather
g 194 p1304: central bank 008, p159: head office location '
540
[}
E

20 B before removal
W after removal

0.19_— P488: chairperson ~033

(Query) PA40: language = 071, pssy. lives in 282 p17:: Country?  (Query) P36: located = < ) % PS51: livesiin
0.15~ p1037: director — 0:42

Figure 4: Testing the reasoning capacity of OREOLM to infer missing relations. On the left, the barplot shows
the transfer performance on EQ before and after removing relation edges, OREOLM (T = 2) is less influenced.
On the right shows reasoning paths (rules) automatically generated by OREOLM for each missing relation,
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e Background and Motivation
« Background
* Research questions

« Algorithms
e Algorithm #1
e Algorithm #2
e Algorithm #3
* Query2Box

= + Conclusion
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Query2Box: Pro/Con

Pro:

-  Embeds complex queries efficiently with logical conjunctions and disjunctions and
existing quantifiers efficiently

- Improves multi-hop reasoning for incomplete graphs, showing good results for
generalizing across unseen queries

Con:
- Computational burden for training and Disjunctive Normal Form transformation

- Higher embedding dimension needed to maintain accuracy
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BetaE: Pro/Con

Pro:

* Beta Embedding can naturally model uncertainty by its differential entropy

* Beta Embedding firstly support full first-order logic by extenting the negation
operation

* Beta Embedding provides a closure definition for operators and allows the
operators to combine in arbitrary ways at a fixed space/time complexity

Con:
* The use of De Morgan’s laws for union operations is an approximation, which lead

to reduced accuracy for certain queries requiring precise union handling.
* BetaE is designed for static KGs which need extra work to apply on dynamically
changing knowledge graphs
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NewLook: Pro/Con

e Pro:

o General Applicability: NewLook supports more variables than
previous work

o Effectiveness: NewLook goes beyond the linear transformation,
thus performs better than previous work

o Efficency: NewLook runs on average 3 times faster

 Con:

o Long training time, which suggests high computational costs or
complexity at starting condition

o Does not incorporate subgraph matching and embedding based
methods
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Empowering Language Models with Knowledge Graph Reasoning for

Question Answering

Pros:

Enhanced Reasoning Ability: OREOLM can infer missing relations, enabling it to
answer questions that require multi-hop reasoning across a knowledge graph.

Interpretability: By providing explicit reasoning paths, OREOLM improves the
transparency of the answer generation process.

Improved QA Performance: It demonstrates significant performance improvements in
both closed-book and open-book QA across different datasets.

Cons:

Complexity: Integrating KG reasoning adds architectural and training complexity,
which may lead to higher computational requirements.

Dependency on Knowledge Graphs: The model’ s effectiveness relies heavily on the
quality and completeness of the knowledge graph; missing or incorrect relations can
impair its reasoning.

Scalability: Very large knowledge graphs may introduce challenges with memory and
processing power as the number of entities and relationships scales up.
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