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Logical Reasoning

• What is logical reasoning?

– the process of using structured and coherent thought to analyze 
arguments, draw conclusions, and make decisions based on 
evidence and principles of validity

• Why graph logical reasoning?

– Better Knowledge Representation

– Inter-displinary Application
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Research Questions
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• Q1. How can we represent complex logical queries, and 
different logical operators?
o Challenge: Prior work models queries as single points in the vector 

space, while complex queries could represent many different entities 
scattered in space.

o Challenge: Prior work only covers a subset of the query types and 
operator types.

• Q2. How can we create better embeddings for different logical 
operators?
o Challenge: Prior work suffer from model deficiency, which would 

lead to cascading errors.

• Q3. How can we leverage the ability of LLMs in KG related 
tasks, such as KGQA?
o Challenge: LMs cannot interact with KGs well.



Overview
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Key Challenges
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Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
https://doi.org/10.48550/arXiv.2002.05969

- Modeling sets in Vector Space
o Preceding papers represent queries as single 

points
▪ Fails to capture multiple answer queries
▪ Single point not idea for logical operators

- Scalability to large 
Incomplete Graphs
o Subgraph matching techniques 

for traditional KGs 
computationally expensive

o Sensitive to missing edges

- Generalization to new 
unseen query structure
o Models overfit to seen query 

patterns

- Handling queries with 
disjunction and quantifiers
o Increases the complexity of reasoning

https://doi.org/10.48550/arXiv.2002.05969


Problem Statement

Given a complex logical query and an incomplete Knowledge Graph,

1. efficiently model and reason over sets of answer entities in a vector space

    2. handle arbitrary Existential Positive First-order (EPFO) queries

    3. scale to large KGs and generalize to unseen query structures and missing relations
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Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
https://doi.org/10.48550/arXiv.2002.05969

Key Components:

• Box Embeddings

– Hyper-rectangles in vector space

• Geometric Operators

– Projections for relational transitions, intersections for modeling logical conjunction

• Disjunctions

– Query transformation into Disjunctive Normal Form

https://doi.org/10.48550/arXiv.2002.05969


Algorithm 
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Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
https://doi.org/10.48550/arXiv.2002.05969

https://doi.org/10.48550/arXiv.2002.05969


Algorithm cont’d
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Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
https://doi.org/10.48550/arXiv.2002.05969

https://doi.org/10.48550/arXiv.2002.05969


Experiment
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Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
https://doi.org/10.48550/arXiv.2002.05969

- Experiments on three standard KG benchmarks 
(Table 5)

o FB15k, FB15k-237, and NELL99
- Evaluate on 9 diverse query structures (Figure 4) 

o Train on 5 conjunctive structures
o Test on 9 unseen conjunctive queries  

Goal: 
Focus on answering queries requiring multi-hop 
reasoning over incomplete KGs

o Use Hits@3 and Mean Reciprocal Rank 
(MRR) as evaluation metrics

https://doi.org/10.48550/arXiv.2002.05969


Results 1
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Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
https://doi.org/10.48550/arXiv.2002.05969

- Q2B achieves higher Hits@3 across all datasets (FB15k, FB15k-237, NELL995) compared to GQE 
and GQE-DOUBLE.

- Box embeddings effectively capture sets of entities, outperforming point-based embeddings 
(GQE)
o Demonstrates strength of box-based modeling in higher embedding dimensions

https://doi.org/10.48550/arXiv.2002.05969


Results 2
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Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
https://doi.org/10.48550/arXiv.2002.05969

- Q2B with attention-based intersection (Q2B) outperforms variants like Q2B-AVG and 
Q2B-DEEPSETS
o Attention in intersection operations shows promising results

- Models with adaptive box sizes (Q2B) yield better results than fixed-size variants (Q2B-
SHAREDOFFSET)

https://doi.org/10.48550/arXiv.2002.05969


Takeaways
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Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
https://doi.org/10.48550/arXiv.2002.05969

From this paper we got: 
- Flexible Box Embedding for Logical Operations
- Improved accuracy on standard benchmarks

- Robust generalization to unseen queries and multi-hop reasoning tasks

Following papers citing Query2box explored: 
• LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on 

Knowledge Graphs
• Deep Bidirectional Language-Knowledge Graph Pretraining
• QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question 

Answering

https://doi.org/10.48550/arXiv.2002.05969


Problem Definition #3 (1 pages)
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• Ren, H., & Leskovec, J. (2020). Beta embeddings for multi-hop logical reasoning in knowledge graphs. Advances in Neural Information Processing Systems, 33, 19716-
19726.

Beta Embeddings for Multi-Hop Logical 

Reasoning in Knowledge Graphs

Hongyu Ren, Jure Leskovec
Stanford University



First-order logic queries(FOL)
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V is the set of entities. A first-order logic query q consists of a non-variable anchor entity 

set Va ⊆ V, existentially quantified bound variables V1, . . . , Vk and a single target 

variable V?, which provides the query answer. The disjunctive normal form of a logical 
query q is a disjunction of one or more conjunctions. 

1. Each c represents a conjunctive query with one or more literals e.

2. Each literal e represents an atomic formula or its negation. 

, where va ∈ Va, V ∈ {V?, V1, . . . , Vk}, V’ ∈ {V1, . . . , Vk}, V ≠ V’, r ∈ R and each 
relation type r ∈ R is a binary function r : V × V → {True, False}



Computation Graph and Logical Operators
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Given a FOL                                                                                                                  ,
we can derive  its corresponding computation graph by representing each atomic formula with 
relation projection, merging by intersection and transforming negation by complement as follow, 
which demonstrates the computation process to answer the query

Each node in the computation graph represents a distribution over entities in the KG, and each 
edge applies a logical operator that transforms this distribution, including operators such as 
projection, conjunction, disjunction, and negation.

1. Relation Projection: Given a set of entities S ⊆ V and relation type r ∈ R, compute adjacent 

entities related to S via r:

2. Intersection: Given sets of entities  , compute their intersection 

3. Complement/Negation: Given a set of entities S ⊆ V, compute its complement

4. Disjunction/Union: According to the De Morgan’s laws, given sets of 

entities  ,  is equivalent to



Motivation
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Previous works only support existential positive first-order (EPFO) queries, a subset of 
FOL queries with existential quantification (∃), conjunction (∧) and disjunction (∨), but 
not negation (¬) because these methods embed queries as closed regions. 

However, negation is a fundamental operation and required for the complete set of 
FOL operators. 

Object of this work:

Defining a probabilistic embedding framework for answering arbitrary First-order logic 
queries queries over KGs which can handle a complete set of first-order logical 
operations: conjunction (∧), disjunction (∨), and negation (¬)
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Beta Embedding

In order to define negation/complement, the authors propose to embed both the entities 
and queries into the same space using probabilistic embeddings with bounded support. 
And Beta distribution Beta(α, β) which has two shape parameters is able to modeling a 
range of probability densities within a bounded interval [0, 1]. The density function of 
Beta distribution is                                 , where x ∈ [0, 1] and B(·) denotes the beta 
function. 

A Beta Embedding consists of multiple independent Beta distributions which can be 
represent with the parameter of each beta distribution as  S = [(α1, β1), . . . ,(αn, βn)], 
where n is a hyperparameter for the dimension.

1. For entities, each entity are viewed as a set with a single element and assigned an 
initial Beta embedding with learnable parameters.

2. For queries, each query is embedded as a Beta embedding which is calculated by a 
set of probabilistic logical operators following the computation graph
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Properties of Beta Embedding

1. Naturally model uncertainty

The uncertainty of a Beta distribution can be measured by its differential entropy as

which can be applied directly to estimate the uncertainty for Beta Embedding

2. Logical/Set operators (conjunction/intersection and especially 
negation/complement) are closed

1. Given Beta embedding S, S is a fixed point of

2. Given Beta embedding S, we have



Logical Operators
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By embedding both the entities and queries into the same space by assigning initial Beta 

embeddings with learnable parameters  where n is a 

hyperparameter, the Logical Operators can be formulated as follow

Probabilistic Projection Operator P

Mapping S to S’ with relationship r by 

Probabilistic Negation Operator N

Negation Operator can be defined as 



Logical Operators
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Probabilistic Intersection Operator I

Given n input embeddings , Intersection Operator I can be defined by taking the 

weighted product of the PDFs of the input Beta embeddings​

Where pS is the Beta distribution PDF for embedding S, Z is a normalization constant and w1,⋯,wn 

are the weights with their sum equal to 1 which are calculated as follow​

With the property of Beta distribution, we can derive  as  when S = 

[  ]​



Training Objective
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Training Target
Minimize the distance between the Beta embedding of a query and its answers while maximizing 

the distance between the Beta embedding of the query and other random entities via negative 

sampling

And the distance between entity v and query q is defined as 



Experiments: QA

25

PS: p projection, i intersection, n negation, u union



Experiments: Uncertainty vs. Answer Size
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Problem Definition #3 (1 pages)
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• Liu, L., Du, B., Ji, H., Zhai, C., & Tong, H. (2021). Neural-Answering Logical Queries on Knowledge Graphs. Proceedings of the 
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.

Neural-Answering Logical Queries on Knowledge Graphs

Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, Hanghang Tong
Department of Computer Science, University of Illinois at Urbana Champaign 



Background

• Query graph

o We can transform a question into a logical query graph

o e.g.: Who is the spouse of Obama -> ? ---(is married to)---> Obama

• Logical Operations

o Projection, Intersection, Difference, Union

oOperating on box embeddings

28



Challenges and Previous Work

• Previously: Sub-graph 
matching

oReal-word graphs are often 
incomplete

o Empty answer, wrong answer, 
high computing time

• Recently: Embedding-based 

methods

o Cascade of errors, especially 
in long and complex queries

o Limited support of operators

29



Operators: What and How
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Projection

• Instead of modeling projection as linear transformation, this 
paper uses neural network to learn the projection operation

• Adaptively adjust the center and offset of the box, 

which which mitigates the cascading error problem.
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Intersection and Difference
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Training

• Generate a set of queries together with their answers, and 
then learn entity embedding, relation em- bedding and 

geometric logical operations at the same time

• Use negative sampling to optimize the model

33



Dataset and Evaluation Metrics
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• Dataset: FB15K, FB15K-237, NELL
• Metric: Hit@k



Experiment Results
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Background

• ODQA Overview: Requires models to answer questions beyond 
the immediate context.

• Challenges with Traditional Language Models: Closed-
Book Models lack external knowledge coverage.

• Advantages of Knowledge Graphs (KGs):

        1. Compact Knowledge Representation: Triples offer 
efficient storage and retrieval.

        2. Logical Reasoning: KGs allow for path-based 

reasoning to fill knowledge gaps.

• Current Limitations in KG and LM Integration:

– Most methods use LMs as parsers, limiting deep interaction and 
multi-hop reasoning.

36
• Paper: Empowering Language Models with Knowledge Graph Reasoning for Question Answering



Research Questions
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• How can reasoning within knowledge graphs be effectively integrated into 

language models to enhance their performance in Open-Domain Question 

Answering (ODQA)?

• How does multi-hop reasoning within knowledge graphs help language 

models answer complex questions?

• How can reasoning paths be generated alongside answers to enhance 
model explainability?

• Paper: Empowering Language Models with Knowledge Graph Reasoning for Question Answering



Problem Definition #1
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• Knowledge Storage and Reasoning: Limited explicit 
storage in LMs, difficulty answering complex, knowledge-rich 

questions.

• Multi-Hop Reasoning: Need for multiple steps to reach an 
answer; existing models often limited to single-step 

reasoning.

• Explainability: Transparency in reasoning paths is often 
lacking, affecting interpretability.



High level idea

The proposed OREOLM in the paper includes a key 
component—the Knowledge Interaction Layer (KIL). Its design 

approach is as follows:

• Interactive Reasoning Mechanism

• Multi-step Reasoning Path

• End-to-End Training

39



Algorithm #1
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• Paper: Empowering Language Models with Knowledge Graph Reasoning for Question Answering



One example for pretraining model
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Experiment Analysis-1
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Experiment Analysis-2
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Tests OREOLM's ability to reason about missing
relationships
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Query2Box: Pro/Con
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Pro: 
- Embeds complex queries efficiently with logical conjunctions and disjunctions and 

existing quantifiers efficiently
- Improves multi-hop reasoning for incomplete graphs, showing good results for 

generalizing across unseen queries

Con: 
- Computational burden for training and Disjunctive Normal Form transformation 
- Higher embedding dimension needed to maintain accuracy



BetaE: Pro/Con
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Pro: 
• Beta Embedding can naturally model uncertainty by its differential entropy
• Beta Embedding firstly support full first-order logic by extenting the negation 

operation
• Beta Embedding provides a closure definition for operators and allows the 

operators to combine in arbitrary ways at a fixed space/time complexity

Con: 
• The use of De Morgan’s laws for union operations is an approximation, which lead 

to reduced accuracy for certain queries requiring precise union handling.
• BetaE is designed for static KGs which need extra work to apply on dynamically 

changing knowledge graphs



NewLook: Pro/Con

• Pro:

o General Applicability: NewLook supports more variables than 
previous work

o Effectiveness: NewLook goes beyond the linear transformation, 
thus performs better than previous work

o Efficency: NewLook runs on average 3 times faster

• Con:

o Long training time, which suggests high computational costs or 
complexity at starting condition

o Does not incorporate subgraph matching and embedding based 
methods

52



Empowering Language Models with Knowledge Graph Reasoning for 
Question Answering

Pros:

• Enhanced Reasoning Ability: OREOLM can infer missing relations, enabling it to 

answer questions that require multi-hop reasoning across a knowledge graph.

• Interpretability: By providing explicit reasoning paths, OREOLM improves the 

transparency of the answer generation process.

• Improved QA Performance: It demonstrates significant performance improvements in 

both closed-book and open-book QA across different datasets.

Cons:

• Complexity: Integrating KG reasoning adds architectural and training complexity, 

which may lead to higher computational requirements.

• Dependency on Knowledge Graphs: The model’s effectiveness relies heavily on the 

quality and completeness of the knowledge graph; missing or incorrect relations can 

impair its reasoning.

• Scalability: Very large knowledge graphs may introduce challenges with memory and 

processing power as the number of entities and relationships scales up.

53
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